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Abstract

In recent years many studies have reported significant empirical associations between

fertility and marital dissolution. Whether this is a causal effect or only a correlation is

not clear. This issue is explored by using matching methods. First the effect of ”having

children” (binary treatment) on marital disruption is investigated. Then, the method is

extended to the case of “number of children in the household” (multi-valued treatment).

The main findings indicate that parents do not divorce less in the presence of children but

they only postpone the decision to divorce until children get older.
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1 Introduction

In recent years many studies have reported significant empirical associations between fertility

and marital dissolution. Whether this is a causal effect or only a correlation is not clear. The

goal of this empirical analysis is to find out whether there is a true causal effect of fertility on

marital dissolution. If fertility were randomly assigned to the population of married couples,
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then the observed marital dissolution differential by fertility could be interpreted as a causal

effect. However, as shown in Vuri (2001), the marriage continuation probability increases as the

number of children increases, but at the same time the potential stability of the marriage may

affect the arrival of children. Therefore, fertility may not be exogenous to the decision of marital

dissolution.

There is a substantial body of literature studying the effect of fertility on marital dissolution

and it can be divided into two categories based on the methodological approach used: studies

considering fertility as an exogenous variable, and studies addressing the problem of endogeneity

of fertility.

Studies in the first category show that children increase the stability of their parents’ marriage

throughout their preschool years, while children born before marriage increase significantly the

chances that the couple will dissolve (Becker, Landes and Michael 1977, White and Lillard 1991,

Peter 1986, Ono 1998). The positive effect of having children on marital stability does not seem

to hold in the case of high number of children (Thornton, 1977).

However, this literature is not satisfactory because it neglects the potential problem of en-

dogeneity of fertility. This implies that if fertility is not an exogenous variable in the divorce

equation, all these studies provide biased estimates of the effect of fertility on marital disso-

lution. There are two potential sources of bias. First, the couples might differ systematically

in their observable characteristics by fertility, i.e. if characteristics like religion, age and earn-

ings differ between couples with children and childless couples, this might explain the observed

marital dissolution differential by fertility. The second source of bias might be due to unobserv-

able factors that affect both fertility and marital instability, in which case at least part of the

observed relationship between them is spurious. The existence of any of the two biases would

imply that households with children would behave differently from households with no children,

independently of any true causal effect of fertility on divorce (selection bias problem).

Studies in the second category acknowledge the problem of endogeneity of fertility but their

analysis is not always convincing. For instance, Becker et al. (1977) initially suggest the use of

a simultaneous equations model to identify the causation between children and dissolution, but

then they decide against this strategy by constructing a situation (they select women aged 40-55

whose fertility is already completed) that excludes causation running from marital (in)stability

to fertility. Koo and Janowitz (1983) formulate, for married couples, a simultaneous model

of fertility and marital dissolution, but then they estimate the two equations individually by

single equation logit method, ignoring the issue of simultaneity previously addressed. Lillard

and White (1993) use instrumental variables techniques to identify the simultaneous model of

marital separation and fertility. However, the instrument chosen to identify the separation

equation - the legal environment for divorce in the state of current residence - is weak because
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it need not affect separation, which is the outcome of interest- but only legal separation and

divorce. Finally, Brien, Lillard and Stern (1999) propose a way to model endogenous investment

in children in a model of cohabitation, marriage and divorce; unfortunately, they revert to

exogenous investment in children as an element of the cost of divorce in their estimation because

of computational costs.

This paper takes into account the problem of endogeneity of fertility but it uses the framework

known as the potential outcome approach to identify and estimate the effect of interest. In

particular, the relationship between fertility and marital dissolution is formulated in a treatment-

outcome framework similar to an experiment where the treatment is randomly assigned. The

treatment of interest (fertility in this case) is defined in terms of potential marital outcomes for

the couples with children (treated); in particular the following question is explored: what would

have been the marital outcome of a couple with children had they not had children? In this paper,

I draw on matching methods developed in the statistcs literature (Rubin 1977, 1979, Rosenbaum

and Rubin 1983, Heckman et al. 1989, 1997, 1998 ) that exploit full information contained in

observable covariates. The matching method provides a way to estimate treatment effects when

controlled randomization is not possible and there are no convincing natural experiments which

could substitute randomization. The main purpose of the method is to identify a systematic way

to construct a correct sample counterpart for the missing information on the treated outcomes

had they not been treated and to pair units in the two groups.

The main findings indicate that parents do not divorce less in the presence of children but

they only postpone the decision to divorce until children get older. Furthermore, not only the

presence of children has an effect on marital dissolution but also the number of children in

different age groups matters.

The remainder of the paper is organized as follows: Section 2 briefly summarizes the decision

model of fertility and divorce presented in Vuri (2001). Section 3 introduces the potential

outcome approach and it identifies the treatment effect under the causal effect model. Sections

4 describes the matching approach for the binary case (having children or not). Section 5

extends the methodology to the multi-valued treatment case (number of children). Section 6

describes the data sets used (the German Socio-Economic Panel-GSOEP, the British Household

Panel Survey-BHPS, and the Panel Study of Income Dynamics-PSID), and the process of sample

selection. In section 7, the results are presented. Finally, section 8 presents some concluding

remarks and direction for further research.
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2 The theoretical framework

A useful tool for examining the relationship between fertility and divorce is Becker’s analysis

of marriage (1974), according to which marriages and cohabitations are seen as voluntary ar-

rangements between two adults, formed to coordinate consumption and production activities,

including the conception of children. When couples marry, they begin to acquire various ”things”

together, including a dwelling and its furnishings, shared interest to friends and so on. These

are defined as ”general” investments because they retain their value regardless of the couple’s

marital status. However, there are also other types of investments made by the couples called

“marital-specific” because they belong to the couple rather than to either one of the partners

separately (e.g. information on the partner’s preferences, a division of labor inside and out-

side the household, sexual affinity and children). One immediate implication of this distinction

between marital investments is the way they affect a couple’s divorce probability because the

accumulation of marital-specific capital raises the expected gain from remaining married and

consequently discourages dissolution (Becker et al. 1977).

This is particularly true for children because they represent the most important marital-

specific investment of a couple during their marriage. Therefore, parenthood provides an im-

portant basis for marital stability and children greatly lower the risk of marital disruption (see

Becker et al. 1977, Cherlin 1977, Becker 1991, Morgan and Rindfuss 1985). The presence of

children may not only make the marriage more stable but it may also delay divorce1 by in-

creasing the gains from marriage and making it more costly than continuation in the marriage

for two reasons: i) because of the anticipated complications attending a divorce action, such as

problems with child custody, visitation plans, coparenting and single-parent problems; ii) be-

cause of the increasing awareness of the financial and psychological costs of divorce for children.

Consequently, children appear to constitute financial, legal, and emotional2 barriers to divorce.

However, causation also runs in the other direction, i.e. the arrival of children may be affected

by the potential stability of the parents’ marriage. In fact, a couple’s “divorce inclination” may

influence their decision to begin a family and their willingness to add children to an existing

family. Therefore, couples who face a relatively high likelihood that they will not stay together

may delay the decision to have children, because of the higher costs of ending a marriage with

children with respect to one without (Weiss and Willis, 1985).

In Vuri (2001) a simultaneous equations model of marriage status and fertility decisions which

1This paper focuses only on the couple’s first marriage . Dissolution, if any, is measured as of the date

husband and wife started to live separately, regardless of whether the legal formality of a divorce decree took

place subsequently.
2 I am referring in this case to a sort of “stigma” which is sometimes attached to persons who divorce when

they have children, especially very young, which might discourage couples from divorcing.
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considers both directions of causality is presented. In particular, in the context of a model of

marital-specific investment, it is shown that the marriage continuation probability increases as

the number of children increases, and that the number of children is increasing in an unobservable

measure of the quality of the marriage, which in turn influences the perceived marriage duration.

This framework leads (with some simplifications) to a simple estimable model described by the

following two equations (for the complete derivation of the model see Vuri (2001, sections 4 and

5):

Di = βCi + γXi + εi (1)

Ci = δXi + νi (2)

where Di is the binary variable identifying whether the couple is observed to divorce (Di =1) or

to stay married (Di =0); Ci represents an indicator for having children or not;3 Xi represents

couple’s demographic and social characteristics.

Equation 1 says that the decision to divorce is influenced by children in the household, by

some observable characteristics Xi and by some unobservable factors εi. Equation 2 models the

decision of a couple to have children, which depends on some observed characteristics Xi and

some unobserved factors νi.

If fertility is exogenous to the divorce decision, then ordinary least square regression of the

effect of fertility on marital dissolution yields an unbiased estimate of the treatment effect β in

equation 1. However, fertility might be endogenous to the divorce decision if there is dependence

between fertility Ci and the error term of the ”divorce” relationship εi. The correlation between

Ci and εi can arise for one of two not necessarily mutually exclusive reasons: (a) dependence

between εi and νi, or (b) dependence between Xi and εi. The first case is referred as selection

on unobservables (Heckman and Robb, 1985) and the second case as selection on observables

(Rosenbaum and Rubin, 1983).

The methodology followed in this paper pursues the selection on observables approach and

does not extend to selection on unobservables. In what follows, the framework of the potential

outcome approach to causality is described.

3 The potential-outcome approach

Using the terminology of the evaluation literature, let Ci denote a binary variable indicating

treatment status ”having children or not” (Ci ∈ {0,1}); furthermore, let Di (1) denote the

3 In section 5, the analysis is extended to the multivalued treatment ”number of children in the household”.
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potential marital outcome of a couple i under the treatment state ”having children”(Ci = 1),

and Di (0) the potential marital outcome if the same couple i receives no treatment ”having

no children”(Ci = 0). Thus, Di = CiDi (1) + (1 − Ci)Di (0) is the observed marital outcome

for a couple i. The individual treatment effect is β
i
= Di (1) −Di (0) , which, however, is not

observable since either Di (1) or Di (0) is missing. Alternatively, one might focus on the average

effect of treatment on the treated couples (ATT henceforth):

̂β|Ci=1
= E (β

i
| Ci = 1) = E [Di (1) |Ci = 1]−E [Di (0) |Ci = 1] (3)

which implies comparing the marital outcome of a couple with children to the counterfactual

case with no children, i.e. what would have been the marital outcome of a couple with children

had not they had children. It is thus necessary that each couple is potentially exposable to any

of the two treatments.4

While the first expectation E [Di (1) |Ci = 1] can be identified in the subsample of the treat-

ment group, the counterfactual expectation E [Di (0) |Ci = 1] is not identifiable without invoking

further assumptions. To overcome this problem, one has to rely on the untreated couples (Di (0))

of the comparison group to obtain information on the counterfactual outcome of the treated in

the no-treatment status. The replacement of E [Di (0) |Ci = 1] with E [Di (0) |Ci = 0] does not

seem the right strategy since treated and untreated couples tend to differ in their characteristics

that determine the outcome if they themselves select into treatment.

An ideal randomized experiment would solve this problem because random assignment of

couple to the treatment ensures that potential outcomes are independent of treatment status.5

Hence, the treatment effect could consistently be estimated by the difference between the ob-

served means of the outcome variable in the treatment group and in the no-treatment group.

However, in this non-experimental setting, the choice of fertility is not likely to be random:

fertility decision of a couple may depend on some (un)observed characteristics which could also

influence its marital outcome. For example, being catholic could affect both the decision to

have children and at the same time discourage marital separation; likewise, parents who are less

committed to their families may be more likely to divorce and less likely to childbearing.

In this case, when randomized experiments are not available, other estimators have to be

devised, relying on appropriate identifying assumptions.

4Note that already at this stage the stable unit-treatment value assumption (SUTVA) has to be made. In

our case, it requires that the marital outcome of a couple depends only on its own treatment status, not on the

treatment status of other couples in the population, and that whether couples have children or not does not

depend on the fertility decisions of others (no peers effect).
5Randomization implies that: Ci ⊥ (Di (0) , Di (1)) and therefore: E [Di (0) |Ci = 1] = E [Di (0) |Ci = 0] =

E [Di|Ci = 0]
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In what follows, the approach used to construct a suitable comparison group, namely the

matching method, and the identifying assumptions on which it is based, namely CIA, are de-

scribed for the binary treatment case. In section 5 the approach is extended to the multivalued

treatment case.

4 The matching approach

4.1 The Conditional Independence Assumption (CIA)

One approach to construct a correct sample counterpart for the missing information on the

treated couples had they not been treated is based on statistical matching. Matching estimators

try to re-establish the condition of an experiment when no such data is available by stratifying

the sample of treated and untreated couples with respect to covariates Xi that rule both the

selection into treatment and the outcome under study. Such a stratification eliminates selection

bias provided all variables Xi are observed and balanced between treated and control group. In

this case, each stratum (or cell) would represent a separate small randomized experiment and

simple differences between treated and controls outcomes would provide an unbiased estimates

of the treatment effect.

The matching method relies on the assumption that the relevant differences between any

two couples, in terms of potential outcomes, are captured in their observable attributes. This

underlying identifying assumption, called “conditional independence assumption”6 (CIA hence-

forth) requires that, conditional on observed attributes Xi, the distribution of the counterfactual

outcome Di (0) in the treated group is the same as the (observed) distribution of Di (0) in the

non-treated group.7 In other words, the outcomes of the non-treated are independent on the

participation into treatment Ci, once one controls for the observable variables Xi. In symbols:

Di (0) ⊥ Ci|Xi (4)

It implies that, given Xi, the non-treated outcomes are what the treated outcomes would

have been had they not been treated. This rules out the possibility that variables other than

6Also “unconfoundedness”, or “ignorable treatment assignment”.
7This is actually the weaker version of CIA. The strong version (Rosenbaum and Rubin, 1983) asserts that the

assignment to treatment Ci is unrelated to the pair of potential outcomes (Di (1) , Di (0)) , within subpopulations

homogeneous in Xi. Formally:

Ci ⊥ (Di (0) , Di (1)) | Xi

However, since our objective is only the construction of the counterfactual E (Di (0) | Xi, Ci = 1) in equation

3, the weaker version of the CIA sufficies to identify the ATT.
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Xi, on which the analyst cannot condition, affect both Di (0) and Ci, i.e. there is no selection

on unobservables. Moreover, assume that Pr(Ci = 0 | Xi = x) > 0 for all x which guarantees

that, with positive probability, there are untreated couples for each x.8 From the previous two

assumptions, it follows that E (Di (0) | Xi,Ci = 1) = E (Di (0) | Xi,Ci = 0) (see Rosenbaum

and Rubin 1983). The conditional mean response of the treated under no treatment for a given

X can thus be estimated by the conditional mean response of the untreated under no treatment

(the technique is simply to replace the unobserved outcomes of the treated had they not been

treated with the outcome of non-participants with the same Xi characteristics, since they are

statistically equivalent). In other words, the matched non-treated couples are used to measure

how treated would have behaved, on average, had they not been treated.9

However, the CIA is controversial because it is based on the assumption that the conditioning

variables available to the econometricians are sufficiently rich to justify application of matching.

In particular, the CIA requires that the set of the Xi’s should contain all the variables that

jointly influence the outcome with no-treatment as well as the selection into the treatment.10

To justify the assumption, econometricians implicitly make conjectures about what variables

enter in the decision set of couples, and how unobserved (by the analysts) relevant variables are

related to observables.

4.2 The average treatment effect for the treated

Under the CIA, the average effect of treatment on the treated can be computed as follows:

̂β|Ci=1
≡ E [Di (1) |Ci = 1]−E [Di (0) |Ci = 1] = (5)

EX {E (Di (1) | Xi, Ci = 1)−E (Di (0) | Xi, Ci = 1) | Ci = 1} =

CIA
= EX {E (Di (1) | Xi,Ci = 1)−E (Di (0) | Xi,Ci = 0) | Ci = 1} =

EX {E (Di | Xi,Ci = 1)−E (Di | Xi,Ci = 0) | Ci = 1}

The ATT is estimated by taking the difference of the outcomes in the two groups conditional

on covariates and then averaging over the distribution of observable variables in the treated

population Xi | Ci = 1.11 Practically, equation 5 is equivalent to stratifying the data into

8This implies to match couples only over the common support region of Xi where the treated and non-treated

group overlap. Consequently, the ATT will be computed only for those treated couples falling within the common

support. The drawback of this selection is that if the treatment effect is heterogeneous across couples, restricting

the sample of treated to the common support can change the parameter estimated.
9Note that under the ”conditional assumption”, it is not necessary to make assumptions about specific func-

tional forms of outcome equations, decision process or distribution of unobservables.
10 In fact, it is called a ”data hungry” identification strategy (Heckman et al., 1998).
11The regression equivalent of this procedure requires the inclusion of all the possible interactions between the
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cells defined by each particular value of Xi; then, within each cell (i.e. conditioning on Xi) the

difference between the average outcomes of the treated and control couples is computed. Finally,

these differences are averaged with respect to the distribution of Xi for the treated couples.

However, in a finite sample balancing X is problematic if the vector of observables is of

high dimension. As the number of variables increases, the number of matching cells increases

exponentially, and very often there will be cells containing either treated couples or control

couples but not both, making the comparisons impossible.

Rubin (1977) and Rosenbaum and Rubin (1983) suggest to alternatively use the conditional

probability to participate into the treatment p(Xi) ≡ Pr (Ci = 1 | Xi = x) = E (Ci | Xi) , the

propensity score, for purposes of stratifying the sample. They show that by definition treated

and non-treated couples with the same value of the propensity score have the same distribution

of the full vector of observables Xi. This is the so-called balancing property of the propensity

score: Xi ⊥ Ci | p (Xi) . Furthermore, they demonstrate that if Di (0) is independent of Ci

given Xi, Di (0) and Ci are also independent given p(Xi). This implies that matching can be

performed on p (Xi) alone, thus reducing a potentially high dimensional matching problem to a

one dimensional problem.

Matching treated and untreated couples with the same propensity scores and placing them

into one cell means that the decision whether to participate or not is random in such a cell

and the probability of participation in this cell equals the propensity score. Consequently the

difference between the treatment and the non treatment average outcomes at any value of p (Xi)

is an unbiased estimate of the average treatment effect for the treated at that value of p (Xi) .

Formally:

̂β|Ci=1
= Ep(X) {[E (Di | Ci = 1, p (Xi))−E (Di | Ci = 0, p (Xi))] | Ci = 1} (6)

Therefore, an unbiased estimate of the ATT can be obtained conditioning on p (Xi), which

is equal to exact matching on the p (Xi) .

However, some drawbacks accompany this strategy. First, the propensity score itself has to

be estimated (see the Appendix for a description of the algorithm used to estimate the propensity

score). Second, since it is a continuous variable exact matches will rarely be achieved and a cer-

tain distance between treated and untreated couples has to be accepted. Several alternative and

feasible procedures based on stratifying and matching (nearest and radius methods of matching)

on the basis of the estimated propensity score have been proposed in the literature to solve this

observables Xi. The essential difference between regression and matching is the weighting scheme used to average

estimates at different values of X .
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problem(see the Appendix for a detailed description of the methods). In the next section, the

extension of the matching methodology to the multivalued treatment case is described.

5 Estimation of the average causal effect with multi-valued

treatment

Imbens (2000) and Lechner (1999) have proposed an extension of the propensity score method-

ology that allows for estimation of average causal effects with multi-valued treatments. The

key insight of this method is that “for estimation of average causal effects it is not necessary to

divide the population into subpopulations where causal comparisons are valid, as the propensity

score does; it is sufficient to divide the population into subpopulations where average potential

outcomes can be estimated” (Imbens, 2000: 706).

Here it is assumed that the treatment Ci can take values between 0 andK, i.e. k = 0, 1, ...,K.

I am interested in average outcomes, E {Di (k)}, for all values of k, and in particular in differences

of the form E {Di (k) −Di (s)}, i.e. the average causal effect of exposing all units to treatment k

rather than to treatment s. The key assumption, like in the binary case, is that adjusting for

covariates solves the problem of drawing causal inferences. This is formalized by using a weak

version of CIA in the multivalued treatment case. Let Ti (k) be the indicator of receiving the

treatment k:

Ti (k) = 1 if Ci = k

= 0 otherwise

The weak version of CIA (also weak unconfoundedness) states that the assignment to treat-

ment Ci is weakly unconfounded, given the covariates Xi if:

Ti (k) ⊥ Di (k) | Xi for all k = 0, ...K

Weak unconfoudedness requires only pairwise independence of the treatment with each of

the potential outcomes. Furthermore, the independence of the potential outcome Di (k) with

the treatment has to be only ”local” at the treatment level of interest, i.e. with the indica-

tor Ti (k) rather than with the treatment level Ci. The important result is that under weak

unconfoundedness the expected value of Di (k) can be estimated, by adjusting for Xi :

E {Di (k) | Xi} = E {Di (k) | Ti (k) = 1,Xi} = E {Di | Ci = k,Xi}

10



Then, average outcomes can be estimated by averaging the conditional means: E {Di (k)} =

E [E {Di (k) | Xi}] .

For the same motivations seen for the binary case, it can be difficult to estimate E {Di (k)}

when the dimension of Xi is large. To solve the problem, Imbens proposes the multivalued

version of the propensity score methodology. Firstly, he defines the ”generalized” propensity

score (GPS), which is the conditional probability of receiving a particular level of the treatment

given the covariates. In symbols:

r (k,xi) ≡ Pr (Ci = k | Xi = xi) = E [Ti (k) | Xi = xi]

Note that as in the binary case, GPS satisfies by definition the balancing property, i.e. Ti (k) ⊥

Xi | r (k,Xi) for all k = 0, ...K.

Then, by using the same argument as in the binary treatment case, he proves that the CIA

given the generalized propensity score r (k,Xi) holds:

Ti (k) ⊥ Di (k) | r (k,Xi) for all k = 0, ...K

Consequently, the average outcomes can be estimated by conditioning only on the generalized

propensity score and the difference E {Di (k)−Di (s)} can be easily computed for any k and s.

6 Data and measures

The empirical analysis of this paper is based on data from Germany, the UK and the USA.12

The German data come from the German Socio-Economic Panel (GSOEP) in its 95% public-

use version (see Haisken-De New and Frick, 1998). The British data come from the British

Household Panel Survey (BHPS) (see Rose et al., 1991). The USA data come from the Panel

Study of Income Dynamics (PSID) (see Martha S.Hill, 1992).

In order to build the final sample of analysis, I follow a simple procedure of sample selection:

firstly, I select only the couples married for the first time in 1990 or before but still married in

1990 (1992 for the UK), then I follow these couples in the next five years and I identify whether

12For the German sample, I only make use of the West German and Foreigners subsamples for the waves 7-12

(1990-1995). This choice is due to the fact that the sample of immigrants has been collected only since 1994,

while the East German subsample is excluded because the income variables are not comparable with those of

the first two subsamples, at least for the two years after the German reunification in 1989. For the USA sample,

I use the five waves 1990-1995. For the British sample, I make use of the five waves (1992-1997), in order to

extract comparable datasets (with the German and the US samples) in terms of the number of years of analysis.

However, for Germany and the USA, I access a simplified version of their panels, the CNEF 1980-1997, which

contains equivalently defined variables for the PSID and for the GSOEP. Since the CNEF 1980-1997 can be

merged with the original surveys, I incorporate these constructed variables into my current analyses.
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they divorced or separated in one of these five years or are still married at the end of the period

analyzed.13 Couples in which one of the two spouses dies during the period and couples who

marry after 1990 (1992 for the UK) are excluded from the sample. The dependent variable is

the indicator for marital status (equal to one if the couple divorces or separates between 1990

and 1995 (1992 to 1997 for the UK), 0 if the couple is still married at the end of 1995 (1997

for the UK)). The covariates of interest are the indicator of the Number of children between 0

and 18 years old, Number of children between 0 and 6 years old, Number of children between 7

and 18 years old, and dummy variables for Having children between 0 and 18 years old or not,

Having children between 0 and 6, Having children between 6 and 18.14 Each record describes

family characteristics, like yearly total household income and duration of marriage, and personal

characteristics, like age, education, labor earnings, religious affiliation for both partners (being

both Catholic, Protestant or atheist), and 3 country dummy variables, all recorded in 1990 (1992

for the UK). Furthermore, I select only couples where the wife is less than 45 years old and whose

oldest child was less than 18 years of age at the time of the interview.15

After restricting the sample to households with complete records in the critical variables,

3351 records remain (848 for Germany, 923 for the UK, and 1580 for the USA). This constitutes

the pooled restricted sample of household observations in the three countries on which the

estimation results are based (see table 1 for more details on the procedure of sample selection).

Tables 2 shows descriptive statistics (mean and standard deviation) of the controls and the

treatments of interest included in the regressions for the pooled sample. In addition, tables 2-4

show summary statistics of the covariates for the three groups of treated (couples with children

aged 0-18, aged 0-6 and aged 6-18 respectively) and controls (couples with no children in the age

group 0-18, 0-6 and 6-18), and t-statistics from the test of equality of means between them are

reported. Overall, there are substantial differences between the two groups in the three cases

under study in terms of most of the explanatory variables. The existence of such differences

highlights the need for the careful statistical adjustment procedures described in the previous

sections.

The variables selected in this paper are the same considered in the literature on this topic.

In particular, previous studies have usually included husband-wife characteristics at the time of

marriage (or at the time of interview) like education, age, marriage duration, earnings, previous

13The choice of a period of this length comes from the fact that the decision of divorce or separating usually

takes a long time, particularly because of the length of legal procedures.
14The covariates of interest are recorded in 1990 (’92 for the UK); I exclude the couples who have an additional

child(ren) during the five years of analysis in order to compute the effect of the children present in 1990 (’92) on

the probability of being still married five years later.
15This sample selection allows me to exclude from the sample old couples with children who likely moved out

from the household .
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cohabitation, pre-marital births, and traits that for most individuals do not vary over time like

religion, race etc. (see Lecher 2988, Becker et al. 1977, Brien, Lillard and Stern 1999, Lillard

and Waite 1993, Ermish and Francesconi 1996).

For this reason, it can be reasonably assumed that these attributes contain relevant ob-

servable information influencing both the marital outcome and fertility decision. Therefore,

the conditional independence assumption can be considered as valid for the remainder of this

paper.16

7 Estimation results

In section 7.1, estimates of the effect of fertility on marital dissolution obtained through para-

metric methods are presented, namely OLS and probit, the latter taking into account the binary

nature of the outcome variable. These estimates represent the benchmark for the comparison

with the propensity score matching estimates presented in section 7.2. The analysis is performed

both for the binary treatment and for the multivalued treatment.

7.1 OLS and probit estimates

Firstly, three different binary measures of fertility are considered, i.e.“having children between 0-

18 years old”, “having children between 0-6 years old”,“having children between 6-18 years old”

(rows 1-3). In column (1) of table 5, the OLS-estimates of the effects of having at least one child

in each of the three groups on the probability of marital dissolution are reported, controlling for

the vector of observed variables, indicated by Xi in equation (7) and listed in section 6.17 The

estimated coefficient on the fertility binary variable “having children between 0-18 years old”

is positive and equal to 0.036, which implies that having children has a positive effect on the

dissolution rate. This result seems to be at odds with previous empirical findings and theoretical

considerations (see sections 1 and 2). To investigate this result further, I disentangle the treat-

ment ”having children aged 0-18” into two measures of fertility, i.e.“having young children aged

0-6” and “having older children aged 6-18”. The results show that the positive effect previously

16Of course, there may be substantial arguments claiming that this is not true. For example, if one believes that

there are additional unobserved factors correlated with outcomes and selection into treatment, not captured when

we condition on the observables, then, of course, this invalidates the CIA and the following analysis. Moreover,

the presence of infertile couples could also invalidate the CIA, because any couple has to be potentially exposable

to both the treatments. However, it can be reasonably assumed that the proportion of infertile people in the

sample is negligible.
17The list of covariates Xi included in the regression is slightly different from the one listed in section 6 to

avoid problems of collinearity; it includes the couple’s marital duration, the couple’s average age, the couple’s

average age to the square, the couples’s average education, household total income (in log), wife labor earnings

(in log), three country dummies and three dummy for being Catholic, Protestant and atheist.
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estimated is mainly due to the effect of older children (aged 6-18) on dissolution (0.08 percentage

points), while having young children (aged 0-6) reduces significantly the dissolution probability

by 0.021 percentage points. The same result is obtained from probit estimation.18

In rows 4-6, the OLS and probit estimates for the multivalued case (when the treatments are

”number of children aged 0-18”, “number of children aged 0-6”,“number of children aged 6-18”)

are reported. These results are very similar to the ones of the binary case, but smaller in size.

In particular, an additional child in each of the three groups of interest has an effect respectively

of 1.9%, of -3.0% and of 3.3% on marital dissolution.

However, as already pointed out, OLS (or probit) estimates can be biased because of the self-

selection problem and the potential correlation of fertility with some observable characteristics

that make these estimates biased. Therefore, we turn to the propensity score matching estimators

which provide unbiased estimates of the causal effect of fertility on divorce.

7.2 Results using the propensity scores

This section is organized in the following way: the first part focuses on the analysis of the

binary treatment case, in which the estimation of the propensity score, and the results from

the stratification and matching procedures are presented; the second part is devoted to the

multi-valued treatment results.

7.2.1 The dichotomous treatment case

Estimating the propensity score The first step in the implementation of this methodology

is to estimate the propensity score for the three treatments under study. In general, any standard

probability model can be used to estimate the propensity score. For example, Pr{Ci = 1 | Xi} =

F (h (Xi)), where F(.) is the normal or the logistic cumulative distribution and h (Xi) is a

function of covariates with linear and higher order terms. The choice of which higher order

terms to include is determined by the need of obtaining an estimate of the propensity score that

satisfies the balancing property. In this paper,the propensity score for the three treatments of

interest is estimated using a probit model and following a simple algorithm proposed by Dehejia

and Wahba (1998), which is described in more details in the Statistical Appendix. Essentially,

observations are grouped into blocks defined on the estimated propensity score and it is checked

whether the score and the covariates are balanced across the treated and the controls within

each stratum. Interaction and higher order terms are added and blocks are divided into finer

blocks until this balance is achieved. In my case, I have started with five blocks based on the

quintiles of the estimated propensity score for the treated, and then I have tested whether the

18Marginal effects of probit estimation are reported in all the tables in order to be comparable with the OLS

estimates.
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means of the score for the two groups are statistically different. I have built finer blocks until

the test is satisfied for all of them and 9 blocks are identified for the treatments “having children

between 0-18 years old” and “having children between aged 6-18”, 10 blocks are identified for the

treatment “having children between 0-6 years old”. There has been no need to add interaction

and higher order terms. Once the balance is achieved for the score, also the distributions of

covariates Xi between the two groups should be identical for the balancing property. I provide

an example of it by testing for equality of means between the treated and the control groups for

each of the nine variables in Xi, within each block and for each treatment. In almost all cases

I find equality of means of the Xi at the 5% confidence level, and none of the covariates does

systematically fail the test in all the blocks. Remember that when the same test was performed

on the whole sets of control and treated units, rather then within each stratum, I rejected equal

means for twelve out of sixteen variables used in the regression for the treatment ”children

0-18”, eight out of sixteen variables for the treatment ”children 0-6”, and fourteen out of sixteen

variables for the treatment ”children 6-18” (see Tables 2-4). Figure 1 plots the histograms of

the estimated propensity scores for the three treatments. Note that they do not include the

controls whose estimated propensity score is less than the minimum estimated propensity score

for the treated units. There is no need to discard control units at the top of the distribution

because they are below the maximum value of the estimated propensity score for the treated

in all the three cases. This selection is necessary in order to assure that the treated and the

control units lie on a common support. The figure reveals that there is a discrete overlap in

terms of the propensity score in each block, while in the extreme bins there is only a limited

overlap, as expected, because the number of treated units increases and the number of control

units decreases at high values of the propensity score. However, this does not generate bias in

my estimates as long as the balancing property is satisfied; this ensures that the treated couples

in each block are observationally identical to the controls in the same block and only by chance

does the treatment status differ in the two groups.

The next step consists in estimating the ATT using equation 6, where the ATT is computed

as the difference between the treatment and the control average outcomes at any value of p (Xi).

However, as mentioned in section 4, the exact matching on p (Xi), implicit in this strategy, is

unfeasible in practice because the probability of observing two couples with exactly the same

value of the propensity score is in principle zero since p(Xi) is a continuous variable. There are,

however, several methods proposed in the literature based on stratifying and matching (nearest

and radius methods of matching) on the basis of the estimated propensity score (the two methods

are described in details in the Statistical Appendix).Estimating the treatment effect
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Blocking (stratification) estimator The stratification estimator relies on the same division

into strata defined in section 7.2.1, where the covariates are balanced across treated and control

couples by construction. Then, within each block, the difference between the average outcomes

of the treated and the controls is computed. The ATT of interest is finally obtained as an

average of the ATT of each block with weights given by the distribution of treated units across

blocks.

The stratification estimates show a positive effect of fertility on divorce for the cases “having

children aged 0-18” and “having children aged 6-18” (column 1 named unadjusted), the second

effect being larger than the first one (see tables 6-8). In fact, having children aged 0-18 increases

the probability of divorce by 2.0 percentage points, while having older children between 6 and

18 years old increases this probability by 3.0 percentage points. Instead, the effect of having

young children aged 0-6 discourages marital dissolution by 0.3 percentage points (but it is not

statistically significant).

An alternative is the linear and probit regression adjustments (column 2, named adjusted),

which eliminate the remaining within-block differences in the covariates. The results are similar

to the unadjusted estimate in column 1 providing further evidence that the covariates are well

balanced.

Matching estimator In the matching method, each treated couple is matched with replace-

ment to a control couple such that their propensity scores are close enough to be considered

approximately the same. Matching with replacement means that more than one control unit

can be matched to the same treated unit while the unmatched controls are discarded. The sim-

plest method is to match each treated unit to the single control unit with the closest propensity

score (nearest-match method). However, it is obvious that some of these matches are fairly poor.

The radius method of matching offers a solution to this problem because it consists in matching

each treated to the control couple(s) whose propensity score is within a δ−radius chosen by the

researcher.19 In this way only higher quality matches are selected, even if it has the disadvantage

of reducing the sample size.

In tables 6-8, the results of the matching estimators computed using both the nearest match-

ing method and the radius method are reported for the three treatments of interest. For the

last method, three different measures of the δ-radius are chosen in order to check the robustness

of the estimates to this choice. Note that, in the δ-radius method, not only the more distant

controls are discarded, like in the nearest matching method, but also the treated units for which

a match within the δ chosen could not be found. Consequently the lower is the radius chosen,

19
The choice of δ depends on the willingness of the researcher to select more accurate matches because lower

δ implies selecting higher quality matches.
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the smaller is the number of remaining units (column 3).

Like for stratification estimator, the treatment effect can be either estimated as a differ-

ence in means in marital outcomes across these pairs of treated and matched control units

(unadjusted), or a linear regression of marital outcomes on covariates on the balanced sample

can be performed (adjusted). The results show that controlling for covariates does not alter the

estimates significantly.

In particular, the matching estimates provide evidence of a positive effect of having children

aged 0-18 and of having children aged 6-18 on marital dissolution. The first effect ranges from

0.019 for the nearest method to 0.004 for radius method with δ = 0.0005, the second effect

ranges from 0.050 for the nearest method to 0.018 for radius method with δ = 0.0001 (column

1). The effect of having children aged 0-6 on the contrary is negative and ranges from -0.016 for

the nearest method to -0.001 for radius method with δ = 0.0005 (column 1) Furthermore, they

are also consistent with the stratification results.

In conclusion, matching methods and stratification method yield similar results to the para-

metric methods (OLS and Probit) reported in section 7.1, and they support the idea that having

young children only delay parental’s decision of divorce until children get older.

7.2.2 The multi-valued treatment case

Table 9 shows the estimates in the multi-valued treatment cases, respectively ”number of children

aged 0-18”, ”number of children aged 0-6” and ”number of children aged 6-18”. It is important

to note that in this case not only the average effect of having an additional child on the probability

of divorce can be computed (as for the OLS and Probit estimates, see table 3), but the effect of

each additional child on marital disruption can be analyzed, i.e. the effect of going from 0 to 1

child, from 1 to 2 children, from 2 to 3, and finally from 3 to more than 3 children.20 In order

to compute the generalized propensity score an ordered probit of each of the three treatments

of interest on the covariates Xi is computed.

The estimates show that there is a positive effect of the treatment ”number of children aged

0-18” on divorce especially for the first two children (respectively 0.042 for going from zero

to one child and 0.048 for going from one to two children), while the other effects seem to

be of lower magnitude (0.026 for going from two to three children and 0.003 for going from

three to four or more children). By computing a weighted average of these four effects, the

evidence shows that having an additional child in the range 0-18 years old on average increases

the probability of marital dissolution by 3.1 percentage point. The same pattern is observed

for the treatment ”number of children aged 6-18”. Only the effect of going from one to two

20The other cases (couples with more than 4 children) were too rare to be considered separately; consequently,

we have decided to group all the couples with more than three children.
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children is of opposite sign, but it is not statistically significant. The average effect in this case

is 7.0 percentage points. Finally, the estimates of the treatment ”number of children aged 0-6”

on marital dissolution are significantly negative and the larger effect is obtained by going from

0 to one child (-6.6 percentage points). The average effect shows that having an additional

young child reduces the probability of divorce by 6.0 percentage points. Like for the binary

treatment case, the results support the evidence of the OLS (and probit) analysis of Section 7.1

but they are larger in size. Furthermore, the estimates for the multivalued case are higher than

the estimates for the binary case showing that not only the presence of children has an effect on

marital dissolution but also the total number of children in each group matters.

8 Conclusion

In this paper, I shown how to estimate the treatment effect of fertility on marital dissolution

in presence of non random assignment using propensity score methods. In particular, I have

analyzed the effects of three binary treatments “having children aged 0-18”, “having children

aged 0-6”, and “having children aged 6-18” on marital dissolution, by using stratification and

matching techniques, and the effects of the multivalued treatments “number of children aged 0-

18”, “number of children aged 0-6”, and “number of children aged 6-18” on marital dissolution.

The empirical analysis strengthens the evidence that parents do not divorce less in the presence

of children but they only postpone the decision to divorce until children get older; in addition,

the results for the multivalued case support the evidence found for the binary case but they are

larger showing that not only the presence of children has an effect on marital dissolution but

also the total number of children in each group matters.

Two directions of researches are currently under study. First, the temporal dimension of

the data is used and the propensity score methodology is applied to the panel data in the

hope of controlling for some fixed unobservable factors that could invalidate the CIA. Second,

the three countries are studied separately. Preliminary estimates show that Germany behaves

differently from the UK and the USA in that children aged 0-18 have a negative effect on marital

dissolution, whilst the opposite happens in the other two countries. My goal for the next future is

to investigate in further details on these two points and in particular to identifies the institutional

and cultural differences that could explain the different behaviors in the three countries.
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9 Statistical Appendix

9.1 Estimating of the propensity score

Dehejia and Wahba (1998) propose the following algorithm:

1. start with a parsimonious probit (or logit) function with linear covariates to estimate the

propensity score;

2. rank all observations by the estimated propensity score (from the lowest to the highest);

3. in order to match treated and controls over the common support of Xi, the control units

with an estimated propensity score less than the minimum or greater than the maximum

estimated propensity score for treated units are discarded;

4. split the sample in 5 blocks of equal score range;

5. within each block test that the average propensity scores of treated and control couples do

not differ;

6. if the test fails in one interval, split the interval and test again. Continue until the test is

satisfied in all the blocks;

7. within each block test the balancing property, i.e. the means of each covariate do not

differ between treated and control units. If the means of one or more covariates differ,

interactions and higher order terms can be added and blocks divided into finer blocks until

the balance is achieved.

9.2 The blocking estimators

This method is based on the same stratification procedure used for estimating the propensity

score, i.e. the strata are chosen so that the balancing property is satisfied. Then, within these

blocks indexed by q, the average difference in marital status between the treatment and the

control couples is computed:

̂βq =

∑
i∈I(q),Ci=1Di

∑
i∈I(q) Ci

−

∑
i∈I(q),Ci=0

Di

∑
i∈I(q) (1− Ci)

=

∑
i∈I(q),Ci=1

Di

NT
q

−

∑
i ∈ I (q) ,Ci = 0Di

NC
q

where NT
q and NC

q are the numbers of treated and controls in block q, and I (q) is the indicator

function for the couple i being in the block q; then, in order to extend this result to the entire

population of treated, the weighted average of these differences is computed:
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̂β|Ci=1
=

Q∑
q=1

β̂q

∑
i∈I(q) Ci
∑

∀i
Ci

where the weights in each stratum are the fraction of treated couples in each block. The standard

errors for this estimator reported in tables 4-6 have been computed by boot-strapping with 200

repetitions.

An alternative is a linear regression or covariance adjustment techniques within each block.

In this case, the treatment effect βq is obtained by regressing Di on the treatment and other

covariates within each block, and then computing a weighted average exactly as outlined before

(the weights are identical).The advantage of the ”regression in matching” is that controlling again

on the covariates Xi should help to eliminate the remaining within block-differences, although

the results should no change when the covariates are well balanced.

9.3 The matching estimator

In the nearest-match method, each treated unit is matched to the control unit(s) with the closest

propensity score. In symbols, the treated couple i is matched to that non-treated couple j such

that:

p (Xi) − p (Xj) = min
k∈{Ci=0}

{| p (Xi) − p (Xk) |}

None of the treated couples is discarded in the nearest-match method because it is always

possible to find a matched control even if it is far away from the treated couple.

The radius method of matching consists in matching each treated to the control couple(s)

whose propensity score is within a δ−radius chosen by the researcher. In symbols:

δ > p (Xi)− p (Xj) = min
k∈{Ci=0}

{| p (Xi)− p (Xk) |}

If a treated couple has no control couples within a δ−radius, this couple is discarded. Hence,

switching from the nearest-match to the radius match one improves the quality of the matches

but ends up using less observations and thus generate less precise estimates.

The average difference in marital outcomes of the sub-group of treated and the sub-group of

matched comparisons is used to calculate the effect of having children versus not having children

on marital dissolution. Formally, the matching estimator is:

̂β
M

|Ci=1
=

1

NT

[∑
i∈T

Di −

∑
i∈C

ω
C

i
Di

]
(7)
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where T and C denote the sets of treated and matched control couples respectively and ω
C

i
is

the number of times a particular control i ∈ C is used in the matching with a treated couple.

Therefore, the average treatment effect is simply given by the average of the outcome in case of

treatment minus the weighted average of the outcome in case of no treatment, with appropriate

weights for repeated observations.21 The standard error for this estimator reported in tables 4-6

have been computed by boot-strapping with 200 repetitions.

As for the stratification estimator, an alternative is to regress, over the sample of pairs,

the divorce outcome on the treatment indicator of fertility and the covariates, with appropriate

weights for repeated units (the logic for computing the weights is the same as described above).

Note that, while in the stratification method the regression was simply an OLS estimation within

blocks, in the matching method a weighted least square regression (WLS) is performed, where

the weights are one for the treated and the number of times each control couples is used in the

matching for the controls (see equation (7)).

21Note that NT is equal to the number of all treated units in the nearest match methods, and to the number

of the treated units for whom at least one matched control could be found in the radius method.

24



Table 1: Sample selection procedure

Germany USA UK

(1) Couples married (only 1st marriage) 2110 2156 2658

(2) Couples lost in 5 years 462 329 549

Total (1)-(2) 1648 2187 2109

Couples where wife is <45 years old 874 1622 1157

...of whom divorced 46 246 145

Couples with total records 848 1580 923
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Table 2: Descriptive statistics of observable covariates for all the couples and by children aged

0-18 (sample size 3351)

Variable All couples W. children 0-18 W/o children 0-18

mean st.dev mean st.dev mean st.dev. t-stat.

# children 0-18 1.51 1.12 - - - - -

# children 0-6 0.65 0.81 - - - - -

# children 6-18 0.87 1.02 - - - - -

having children 0-18 0.77 0.42 - - - - -

having children 0-6 0.45 0.49 - - - - -

having children 6-18 0.50 0.50 - - - - -

Duration of marriage 15.16 6.29 16.58 5.74 9.85 5.32 25.7

Husband’s age 35.46 7.02 36.11 6.52 33.19 8.15 10.16

Wife’s age 32.99 6.23 33.63 5.82 30.74 7.06 11.33

Mean age 34.22 6.41 34.87 5.95 31.97 7.37 11.09

Husband’s education 12.89 2.86 12.77 2.8 13.32 3.02 4.63

Wife’s education 12.60 2.68 12.46 2.65 13.11 2.72 5.87

Mean Education 12.75 2.42 12.61 2.37 13.21 2.53 6.01

Family gross income 71426 73291 70425 73758 74924 71574 1.48

Husband’s wage 49331 53977 51249 56861 42566 41594 3.79

Wife’s wage 15803 24434 12834 22154 26170 28821 13.49

Roman Catholic 0.18 0.38 0.18 0.38 0.18 0.38 0.42

No religion 0.08 0.26 0.07 0.25 0.1 0.3 3.2

Protestant 0.34 0.47 0.35 0.47 0.29 0.45 2.91

Germany 0.25 0.43 0.25 0.43 0.25 0.43 0.46

UK 0.27 0.44 0.27 0.44 0.45 0.5 2.28

USA 0.47 0.5 0.47 0.5 0.31 0.46 1.64

Notes: see note in table 4.
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Table 3: Descriptive statistics of observable covariates by children aged 0-6

Variable With children 0-6 Without children 0-6

mean st.dev mean st.dev. t-stat.

Duration of marriage 13.80 4.80 16.51 7.22 12.18

Husband’s age 33.01 5.54 37.51 7.46 19.53

Wife’s age 30.68 4.99 34.93 6.50 20.92

Mean age 31.84 5.01 36.22 6.76 20.95

Husband’s education 12.98 2.85 12.82 2.87 1.49

Wife’s education 12.70 2.51 12.52 2.82 1.85

Mean Education 12.84 2.33 12.67 2.49 1.9

Family gross income 63481 70866 78086 74633 5.77

Husband’s wage 48102 58390 50363 49967 1.18

Wife’s wage 10924 22843 19893 24973 10.76

Roman Catholic 0.18 0.38 0.18 0.38 0.24

No Religion 0.08 0.27 0.076 0.26 0.33

Protestant 0.34 0.47 0.33 0.47 0.62

Germany 0.23 0.42 0.27 0.44 2.29

UK 0.27 0.44 0.28 0.45 1.07

USA 0.50 0.5 0.45 0.5 2.9

Notes: see note in table 4.
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Table 4: Descriptive statistics of observable covariates by children aged 6-18

Variable With children 6-18 Without children 6-18

mean st.dev mean st.dev. t-stat.

Duration of marriage 19.71 4.40 10.81 448 55.25

Husband’s age 38.87 5.57 32.01 6.64 32.38

Wife’s age 36.23 4.65 29.71 5.9 35.53

Mean age 37.45 4.85 30.86 6.02 35.39

Husband’s education 12.65 2.91 13.14 2.8 5.01

Wife’s education 12.22 2.71 12.99 2.6 8.38

Mean Education 12.43 2.44 13.07 2.36 7.62

Family gross income 76368 74537 66429 71685 3.93

Husband’s wage 54905 55731 43632 51520 5.96

Wife’s wage 13579 20074 18053 27992 5.32

Roman Catholic 0.19 0.39 0.17 0.38 0.83

No Religion 0.10 0.30 0.10 0.30 5.0

Protestant 0.37 0.48 0.31 0.46 3.82

Germany 0.27 0.44 0.23 0.42 3.23

UK .25 0.43 0.3 0.46 2.97

USA 0.47 0.5 0.47 0.5 0.17

Data legend: Mean Age: average age of the partners; Duration: duration of the marriage; Mean Education:

average education of the partners; Family gross income: total income of the household ; Wife or husband’s

wage: real earnings; Roman Catholic: 1 if both partners catholic; Protestant: 1 if both partners protestant; No

religion: 1 if both partners are atheist; Germany: 1 if german; USA: 1 if american; UK: 1 if british.

Notes: : monetary variables are in EURO (in 1990 for USA and Germany and in 1992 for UK). Note that all

the explanatory variables refer to characteristics in 1990 (in 1992 for the British sample)
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Table 5: Parametric Estimates of the effect of different measures of fertility on marital dissolution

OLS Probit

(1) (2)

having children 0-18 0.036 0.032

(0.014) (0.012)

(1)binary treatmenta having children 0-6 -0.021 -0.014

(0.012) (0.010)

having children 6-18 0.080 0.076

(0.013) (0.013)

# children 0-18 0.019 0.019

(0.005) (0.004)

(2) multi-valued treatmentb # children 0-6 -0.013 -0.008

(0.007) (0.006)

# children 6-18 0.033 0.033

(0.006) (0.005)

Notes: In column 2 (probit) marginal effects are reported .

aLeast square regression: marital dissolution dummy on a costant, a fertility treatment indicator, duration of

marriage, mean age, mean age squared, mean education, log of household income, log of wife’s labor earnings,

catholic dummy, protestant dummy, atheist dummy, German dummy, American dummy

bLeast square regression: divorce dummy on a fertility multi-valued treatment indicator on the same covariates

as in a.
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Table 6: Propensity score estimates of the effect of the presence of children between 0 and 18

years old on marital dissolution (ATT)

Unadjusted Adjusteda N.obs.b

OLS

(1) (2) (3)

Stratification:

based on quintiles 0.020 0.004 2622

(0.016) (0.004)

Matching:

Nearest Match 0.019 0.011 2622

(0.008) (0.010)

Radius: δ<0.0001 0.006 0.008 394

(0.022) (0.025)

Radius: δ<0.0005 0.004 0.009 1518

(0.010) (0.013)

Radius: δ<0.001 0.008 0.014 2186

(0.008) (0.011)

Notes: Coefficients on the binary variable ”Having children between 0 and 18 years old or not” are reported.

Boot-strapped standard errors in parentheses.

Propensity scores are estimated using the probit model, with the following specification:

Pr(Ci=1)=F(marital duration, mean age, mean age2, mean education, log of household total income, log of

wife’s labor earnings, catholic dummy, protestant dummy, atheist dummy, German dummy, American dummy

aRegression coefficients from linear regression of marital dissolution dummy on fertility indicator and all

variables that enter the Probit, estimated by OLS (or Probit) on stratified sample and WLS on the matched

sample, the weights on each control reflecting the number of times it is used in the matching.

bNumber of observations refers to the actual number of comparison and treatment couples used for the

stratification and matching estimators; namely, for the stratification estimator all treated couples and those

comparison couples whose estimated propensity score is greated than the minimum, and less than the

maximum estimated propensity score for the treatment group; for the matching estimator, all treated couples

for whom a match close ”enough” has been found.
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Table 7: Propensity score estimates of the effect of the presence of children between 0 and 6

years old on marital dissolution (ATT)

Unadjusted Adjusteda N.obs.b

OLS

(1) (2) (3)

Stratification:

based on quintiles -0.003 -0.005 1527

(0.015) (0.015)

Matching:

Nearest Match -0.016 -0.026 1527

(0.012) (0.010)

Radius: δ<0.0001 -0.010 -0.013 440

(0.020) (0.018)

Radius: δ<0.0005 -0.001 -0.0014 1096

(0.002) (0.0015)

Radius: δ<0.001 -0.005 -0.004 1283

(0.010) (0.005)

Notes: Coefficients on the binary variable ”Having children between 0 and 6 years old or not” are reported.

Boot-strapped standard errors in parentheses.

Propensity scores are estimated using the probit model, with the following specification:

Pr(Ci=1)=F(duration of marriage, mean age, mean age2, mean education, log of household total income, log

of

wife’s labor earnings, catholic dummy, protestant dummy, atheist dummy, German dummy, American dummy

aRegression coefficients from linear regression of marital dissolution dummy on fertility indicator and all

variables that enter the Probit, estimated by OLS (or Probit) on stratified sample and WLS on the matched

sample, the weights on each control reflecting the number of times it is used in the matching.

bNumber of observations refers to the actual number of comparison and treatment couples used for the

stratification and matching estimators; namely, for the stratification estimator all treated couples and those

comparison couples whose estimated propensity score is greated than the minimum, and less than the

maximum estimated propensity score for the treatment group; for the matching estimator, all treated couples

for whom a match close ”enough” has been found.
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Table 8: Propensity score estimates of the effect of the presence of children between 6 and 18

years old on marital dissolution (ATT)

Unadjusted Adjusteda N.obs.b

OLS

(1) (2) (3)

Stratification:

based on quintiles 0.031 0.020 1695

(0.013) (0.014)

Matching:

Nearest Match 0.050 0.039 1695

(0.013) (0.014)

Radius: δ<0.0001 0.018 0.010 266

(0.024) (0.024)

Radius: δ<0.0005 0.037 0.034 920

(0.012) (0.013)

Radius: δ<0.001 0.043 0.037 1317

(0.009) (0.016)

Notes: Coefficients on the binary variable ”Having children between 6 and 18 years old or not” are reported.

Boot-strapped standard errors in parentheses.

Propensity scores are estimated using the probit model, with the following specification:

Pr(Ci=1)=F(duration of marriage, mean age, mean age2, mean education, log of household total income, log

of

wife’s labor earnings, catholic dummy, protestant dummy, atheist dummy, German dummy, American dummy

aRegression coefficients from linear regression of marital dissolution dummy on fertility indicator and all

variables that enter the Probit, estimated by OLS (or Probit) on stratified sample and WLS on the matched

sample, the weights on each control reflecting the number of times it is used in the matching.

bNumber of observations refers to the actual number of comparison and treatment couples used for the

stratification and matching estimators; namely, for the stratification estimator all treated couples and those

comparison couples whose estimated propensity score is greated than the minimum, and less than the

maximum estimated propensity score for the treatment group; for the matching estimator, all treated couples

for whom a match close ”enough” has been found.
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Table 9: Propensity score estimates of the effect of number of young children on marital disso-

lution

# children 0-18 # children 0-6a # children 6-18

From 0 to 1 child 0.042 -0.066 0.143

(0.026) (0.028) (0.041)

From 1 to 2 children 0.048 -0.049 -0.006

(0.032) (0.015) (0.016)

From 2 to 3 children 0.026 -0.037 0.077

(0.045) (0.012) (0.019)

From 3 to 4(+) children 0.003 - 0.008

(0.016) - (0.009)

Average effect 0.031 -0.060 0.070

(0.015) (0.023) (0.018)

Note: Bootstrapped standard errors in parentheses. The covariates X included in the regression are the same

listed in table 4. a For the treatment "number of children aged 0-6", the maximum number of children

considered is 3 or more than 3.
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