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Abstract 

 

In this paper we develop a simple, yet complete, model of the labour 

market in the neoclassical framework dating back to Friedman (1968) and 

Phelps (1968), among others. According to the existing literature wage 

expectations should be formed in a different way by firms and individuals 

in order temporary deviations from natural rate of employment to take 

place in the “expectations augmented” neoclassical labour market. On the 

contrary we are capable to show that not only temporary but long term 

regular fluctuations and chaotic behaviour of wages and employment 

emerge as a robust finding also when firms and individuals have uniform 

expectations. This suggests at least two noteworthy considerations: 1) the 

Walrasian equilibrium dynamics of the “expectations augmented” 

neoclassical labour market can cause long term unemployment; 2) a 
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‘reminiscence’ of the Phillips curve emerges in a neoclassical labour 

market context, by providing a new perspective to the long lasting 

controversial issue of the existence of the Phillips Curve. 

 

J.E.L.: J0, E30, E24 
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 Introduction. 

 

 

The relation between wage inflation and unemployment, extensively 

discussed since the early work of Phillips (1958) and Lipsey (1960), is a 

matter of renewed interest in the present days.1 As argued by a vast 

literature, firms and individuals take their optimal decisions on the basis 

of an expected wage rather than the actual one. 

The aim of this paper is 1) to develop a simple, yet complete,  model of a 

neoclassical labour market with real wage expectations; 2) to study the 

dynamic properties of such a model.  The analytical framework is similar 

to the one contained in the most part of the current text-books and its 

development, explicitly or implicitly, dates from Friedman (1968) and 

Phelps (1968), among others. Kierzkowski (1980), following a consolidated 

literature,  stresses that different speeds of price expectations for workers 

and producers are a necessary condition for deviation from natural rate of 

employment to take place in his model. In fact “if price expectations are 

formed uniformly the economy should remain in equilibrium because the 

mistakes of various groups of economic agents will cancel each other.” 

(p.198).  Moreover a very remarkable fact is that “in this case, adaptive and 

rational expectations produce the same result: fluctuations of real 

variables are random”. (p.198). Therefore, according this standard view, 

only if the expectations are different for different economic agents, and in 

particular only if worker’s real wage expectations are more sluggish than 

those of producers, one will observe temporary increases in employment 

followed, after a while, from a reduction below its natural level, or in other 

words a possible cyclical adjustment towards the equilibrium. However, in 

any case, the possible cycle can be only temporary and the equilibrium 

condition will be always restored. 

In contrast with this consolidated view, this paper shows that an 

appropriate dynamic analysis of the Friedman-Phelps model with wage 

expectations reveals both interesting and unexpected results. Indeed, 

                                                           
1 See the Journal of Monetary Economics (1999, vol. 44, 2),  special issue on: “The return 
of  the Phillips curve”. 
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irrespective of the numerous empirical studies as well as of its importance 

for policy-makers or  the relative intense theoretical debate, the dynamic 

features of this model are often relegated to a corner: this paper aims to fill 

this gap.  

A first conclusion of the present paper is straightforward and differs from 

the consolidated literature abovementioned: different price expectations for 

different economic agents are not necessary in order to be room for a 

temporary trade-off between employment and inflation2.  

But another part of the story is again more important: not only uniform 

price expectations are able to generate cycles, but in addition these cycles 

represent a long run equilibrium. This latter outcome restores the 

empirical fact of the Phillips curve in a somewhat new light: indeed we 

show that such a curve can appear as a long run equilibrium of a truly 

neoclassical economy. However the Phillips’ curve emerging in our model 

cannot more interpreted as a set of different equilibrium points among 

which the policy maker could choose, as made by the traditional view of 

the curve, but only a dynamical outcome intrinsic to the neoclassical 

labour market.3 
 Finally, such cycles are chaotic so that the fluctuations can really look 

like the seemingly stochastically driven observed time-series of the 

unemployment rate: this means that we can observe a  neoclassical 

endogenously determined deterministic real business cycle different from 

the stochastically driven one postulated by Real Business Cycle theory. 

Notice that in the present model a robust chaotic behaviour may occur 

even if supply of labour is ‘well-behaved’, in contrast with the usual belief 

that only if supply of labour is ‘strangely’ negatively sloped and in addition 

steeper than demand for labour curve, instability of the neoclassical labour 

market occurs.4  

                                                           
2 As noted by Kierzkowski (1980, p.198)  “this trade-off is, however, very short-lived, since    
expectations are generally quickly revised across the economy”. 

      3 Indeed the points belonging to the Phillips curve emerged in the present model are just     
 the realisation of a single trajectory of the underlying (fully deterministic) process.  
 

4 For instance, Kierzkowski (p.194), by considering the case of supply of labour with 
negative slope, states that “stability considerations require that demand curve be steeper 
than supply curve”. 



 5

Other papers discovered chaotic behaviours in the Phillips curve (i.e. 

Soliman, 1996; Montoro et al., 1998)  or chaotic dynamics in macro-

models capable of mimicking a Phillips-type behaviour (Chichilnisky et al., 

1995); however the former used an “empirically” formulation of the Phillips 

curve in discrete-time with somewhat ad-hoc non-linearities and the latter 

found complex dynamics combining a discontinuous production function 

with a special discrete-time formulation. Furthermore Fanti (2002a) shows 

that in a simple labour market represented by the traditional Friedman–

Phelps “expectations-augmented Phillips curve” extended to consider both 

the compensation for “unexpected” inflation in the past contractual period 

and a price-rule according to an anticyclical mark-up, either regular or  

chaotic fluctuations of wages and unemployment appear as a robust 

result. Cycles and periodical long run unemployment also emerged in the 

case of forward-looking expectations and pro-cyclical mark-up (Fanti, 

2002b). 

We note that all above works showing chaotic outcomes have a framework 

at all different and quite special when compared with the present one.  

The plan of the paper is as follows. In the second section we present the 

model. Some theoretical results and numerical simulations are reported in 

section three. Concluding remarks follow.  

 

2. The model. 

  

The analytical framework adopted is based on the model that,  dating from 

Friedman (1968) and Phelps (1968), is  presented in the most part of the 

current text-books.5 We consider a one-good economy, with a single 

representative firm and a single representative worker-consumer. Let’s 

assume that capital is constant, so that it can be normalised to one, and 

so labour (L) is the only relevant input. We assume the standard 

neoclassical production function of the Cobb-Douglas type (where D is a 

parameter reflecting constant technological progress):   

0,10 ><<= DaDLY a   (1) 
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Let Π and ω respectively define the total profit and the nominal wage rate. 

By defining  p as the price of the output, the profit function is defined as 

LpDLa ω−=Π    (2) 

Assuming perfect competition, profit-maximising producers will demand 

labour according to: 

1
1
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where 
p

w ω
=  denotes the real wage (in what follows wage always means 

real wage). 

The workers have the following optimal labor supply: 

( ) bS wSwfL °== 2     (4) 

where S° is a constant composite parameter including price and scale 

factors in the utility function and b represents the wage elasticity of the 

labour supply. 

Let us now consider the dynamics of this economy. Let DD SLwe −=)(  be the 

excess demand for labour; following the dynamics given by the usual 

adjustment according to the laws of supply and demand, e.g. Chichilnisky 

et al. (1995), the wage is  assumed to continuously adjust to the current 

excess demand for labour, [ ])(wew Φ= , and the function Φ is generally  

assumed to be linear:6 

)( SD LLcw −=   (5) 

where c is a positive constant. 

Moreover the literature has argued that the expected value of wage rather 

than the current one matters as regards the decisions to demand for 

labour or to supply labour.  

Following others, as Lucas-Rapping (1969), Kiezkowski (1980) has argued 

that the wage expectations should be different between firms and workers, 
                                                                                                                                                                                            

5 This model is basically equal, among others, to the model developed by Kierzkowski, 
1980. 
6 Equation (5) is the back bone of the Walrasian price adjustment theory. In this sense, 
following Chichilnisky et al. (1995), the model of the present paper can represent a 
Walrasian economy. It is worth to remind that such a neoclassical adjustment 
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remarking that only in that case (and, according to the traditional 

literature,  obviously only temporarily) a fluctuation during the 

convergence towards the equilibrium could be observed. 

In order to confute the belief that different speeds of price 

expectations for workers and producers are a necessary condition for 

deviation from natural rate of employment to take place in a neoclassical 

model, it is assumed that both firms and workers have the same wage 

expectations (we). These expectations, exactly as in Kierzkowski, are  

formed in a backward-looking way, following a vast academic literature as 

well as policy- oriented models of many central banks 7. As known, the 

“perfect foresight – rational expectations” argument would consider as 

‘irrational’  the backward looking behaviour, arguing for forward–looking 

expectations due to the assumption of a knowledge of the economic model 

by agents and then of the future values of the economic variables. The 

backward looking scheme is currently adopted in both Keynesian and 

“policy-oriented” models, while the forward-looking scheme is adopted in 

both the neoclassical-monetarist view and the so-called new-Keynesian 

Phillips curve implied by the rational expectations staggered-contracting 

models à la Taylor (1980). However we notice that also the scheme of 

adaptive expectations could be ‘more’ rational than that of rational 

expectations in the cases in which the model can generate a “chaotic” 

output (as will be shown for the present model in Section 3): in fact, since 

the chaotic dynamics result implies the rediscovery of stochastic behaviour 

of a purely deterministic system and in turn the consequent 

unpredictability of the outcome of the equilibrium dynamics resulting from 

a parametric shock, “the rational expectations argument loses much of its 

strength and non-optimising rules of behaviour – such as adaptive reaction 

mechanisms of the kind assumed in the backward-looking formation of 

wage expectations – might not be as irrational as they may seem at first 

sight” (Medio, 1992, p. 17). Furthermore a well-motivated defence of the 
                                                                                                                                                                                            

mechanism, according to Lipsey (1960), would be capable under opportune conditions to 
lead to the Phillips equation. 
7 As, for example, claimed by Hogan and Pichette (2000, p.1): “The short-run (or 
expectations-augmented) Phillips curve plays a key role in the conduct of monetary policy, 
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assumption of adaptive expectations in dynamic macroeconomics may be 

found in Flaschel-Franke-Semmler (1997). 

The wage expectations process is assumed to obey  

)()( ee wZgtw −=   (6a) 

)()( ZwgtZ −=   (6b) 

which, as known, is equivalent to the following simple second-order8 

exponentially distributed lag function9 

∫ ∞−

−−−=
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This distribution is more general than the usual fixed lag assumption 

(we=wt-1)  and corresponds to the presence of numerous firms and 

individuals (implicit in the competitive market assumption) with different 

times of response, as argued by Invernizzi-Medio (1991). This distribution 

has a mean value of 2/g, (and a variance of 2/g2), and g represents the 

speed with which the agents revise their wage expectations. 

The final model takes the form: 
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3. Main theoretical and numerical results 

  

The equilibria of the system are defined as the solutions of the 

equation (5), as the introduction of the expectations does not change the  

equilibrium emerging only from the (5). 
                                                                                                                                                                                            

particularly in countries where the central bank has an explicit mandate to target the 
inflation rate”. 
8 Although there few applications in economics of exponential lags greater than the first-
order one, in his famous textbook Allen (1967) also considered the cases of second and 
third-order. Kierzkowski (1980), as the most part of the literature, specifies the 
expectation equation as a first-order exponentially distributed lag function. 
9 We recall that, via the so-called linear trick,  the integro-differential humped memory is 
transformed into a couple of new variables both adjusting over time following adaptive 
mechanisms or, more precisely, we have a “recursion” of two adaptive mechanisms (see 
McDonald, 1978, and Fanti-Manfredi, 1998). 
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From 
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The solution w*=0 is obviously not interesting. 

The following proposition summarises our steady state analysis: 

Proposition 1: the model (8) always admits a unique equilibrium point 

E1=(w*, we*, Z*), which is always economically meaningful (we omit the 

trivial proof).  

The local stability analysis of the unique equilibrium of the system leads to 

the following main results (proofs in the Appendix): 

Proposition 2: also if consumption and leisure are substitutes - and labour 

supply is a well-behaved increasing monotonic function of the wage - the 

equilibrium E1 can be destabilised.  

Hence in presence of backward-looking wage expectations in order to have 

instability is not required that both the supply of labour had a negative 

slope and the supply curve be steeper then the demand curve.  

Proposition 3: 1) the equilibrium is always locally asymptotically stable 

(LAS) when g>cφ/2; 2) on the contrary, when g<cφ/2, instability occurs, 

where 
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The Hopf bifurcation locus is given by  

g2[2g-cφ]=0    (10) 

and it is easily proven that on the locus:  

gH=cφ/2      (11) 

a Hopf bifurcation occurs.  

Inspection of the bifurcation curve gH shows that the stability of the 

Walrasian equilibrium prevails for combinations of values of the speeds of 

adjustment of expected wages and of actual wages which lie above a 

critical line, given by the bifurcation curve. 
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Moreover the following remark holds: 

Remark: the parameters affect the stability according to the following clear-

cut roles10: 1) increases both in the speed of revision of the expectations g 

and in the technological index D work for stability; 2) increases both in the 

preferences parameter S°  and in the speed of wage adjustment c work for 

instability and chaos. 

The previous findings  on Hopf bifurcation, are summarised by the 

following (proofs in the Appendix):  

Proposition 4: the unique equilibrium E1 is locally asymptotically stable  for 

g>gH= gH(a,b,c,D,S°)>0. When, starting from a parameter set in which E1 is 

LAS, the parameter g decreases, the equilibrium point shows a Hopf 

bifurcation at the value gH=gH(a,b,c,D,S°)>0, with the appearance of local 

limit cycles (at least one) surrounding the E1 equilibrium. 

Viewed in terms of the speeds of adjustment g,c, the bifurcation locus gH 

(given as the only admissible solution for g of the eq. (10)) it is a linear 

increasing function of c. The straight line g=cφ/2 splits the plane into two 

regions. In the region above the line (g>cφ/2) the system is always LAS. 

Conversely in the region below the line the system is unstable. The 

qualitative dynamics below the bifurcation locus (eq. 11) is shown in fig.1. 

The numerical simulations has revealed that a “crater” bifurcation occurs 

in the proximity of the bifurcation locus, generating a “bi-stable” system 

(see the next section for details): there is a coexistence both of a stable 

fixed point and of a stable limit cycle; subsequently for further reductions 

of g only one stable limit cycle exists, and this latter always exists until the 

‘crisis’ line is reached: subsequent reductions of g generate chaotic 

behaviours. Finally further parametric reductions lead beyond an 

‘exploding’ line where the trajectories of the system explode.  

 

FIG. 1-  A diagram showing the stability boundaries in (c, g) parameter 

space for the system (8) where the stability regions for the different 

                                                           
10 The simple proof is in Appendix. As regards both the elasticity of labour supply and the 
returns of scale of the labour factor, for sake of brevity we have not investigated their role 
on the stability. 
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dynamic solutions are also indicated. Legend: A= stability region; B= bi – 

stability region; D= only one stable cycle region; C= chaotic region. 

 

3.1 - Simulative evidence. 

 

The Hopf bifurcation theorem used in the previous section is a local result 

which only permits to detect the existence of a (local) bifurcation of an 

equilibrium point in periodic orbits. Conversely, it nothing says about 1) 

uniqueness and 2) stability of the limit cycles emerging from the 

bifurcation. In particular, it nothing says on the question whether the 

bifurcation is supercritical or subcritical, i.e. whether the limit cycles 

which bifurcate from the stationary state are (at least) locally stable or not. 

Moreover predictions of the theorem are local also for what concerns the 

parameter space: “the Hopf bifurcation theorem is local in character and 

only makes predictions for regions of parameter and phase space of 

unspecified size” (Medio, 1992, ch.2). These last facts make interesting to 

resort to numerical simulations to investigate matters such as i) the 

stability properties of the involved periodic orbits, ii) their uniqueness, iii) 

the size and the shape of its (or their) basin of attractions, iv) the size and 

the shape of the parameter region in which limit cycles exist, v) the global 

rather than local behaviour of the system. 

We will show that in addition to the local persistent periodic behaviour 

analytically discussed in the previous section, other, more complex, 

dynamic behaviours of the system are possible when the global 

behaviour of the model is numerically investigated.  

In particular, two interesting dynamic behaviours are evidenced: i) the bi-

stability case; ii) the chaotic case. The chosen bifurcation parameter is, in 

line with the main issue of the paper aiming at discussing the dynamic 

role of uniform expectations, the speed of adjustment of wage expectations, 

g. The simulations show how the structure of the attractors evolve as the 

bifurcation  parameter is varied while all the other parameters are kept 

fixed. As an illustrative example, the following parameter constellation has 
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been considered: D=1, S°=0.5, a=0.51, b=0.42, c=4. The corresponding 

equilibrium values are w*=we*=Z*=0.76.  

The following table sums up the entire set of dynamic behaviours in terms 

of the parametric windows tuning the bifurcational scenarios occurring 

when g is smoothly decreased: 

Table 1. 

g>2.903 2.903>g

>2.89 

2.89>

g>2.2 

2.2>g>1.8 1.8>g 

(Global) 

Stability 

Bi-

stability 

Only 

one 

stable 

cycle 

Chaotic 

cycles 

Explo

sion 

of the 

trajec

tories 

 

3.1.1 -  The “bi-stability” case. 

As known, while stable closed orbits in the supercritical case can be seen 

as stylized business cycles, the subcritical case, as pointed out by 

Benhabib and Miyao (1981), corresponds to the concept of corridor 

stability as developed by Leijonhufvud (1973) and Howitt (1978). The 

definition of corridor stability is straightforward: a fixed point is corridor 

stable if the system converges to its dynamic equilibrium for small 

perturbations, but shows no such tendency for larger shocks. The 

subcritical case means that the unstable orbits enclose a region of stability 

in which all orbits inside that region converge to the fixed point. It is 

known that the problem of analytically determining the stability of limit 

cycles and that of determining their number can be performed by using the 

nonlinear parts of an equation system, but this last issue, which is of 

critical relevance from the point of view of a substantive economic analysis, 

it is not tackled here analytically because it needs a huge amount of 

cumbersome algebra (see for instance Guckenheimer-Holmes, 1983), 

whose interpretation is generally economically meaningless. 

Resorting to the numerical simulations, we have ascertained the existence 

of the so-called “crater” bifurcation scenario, which, though rarely 

discussed in the economic literature, is important for its interesting 
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economic interpretation. Indeed it enhances the description of 

Leijonhufvud’s idea of corridor stability, allowing for  large shocks do not 

lead to a totally unstable dynamics (as in the case of a subcritical 

bifurcation) but rather to a persistent cycle11.  The economic importance of 

such a situation relies on the co-existence of two equilibria, the one a 

stable point, the other a stable oscillation, which can be also termed (in 

the words of Grasman, 1994) “bi-stability”. 

The “crater” bifurcation has been rarely discussed in an economic context, 

despite of  its importance for economics, with the exception of Kind (1999) 

(who attributes such a definition to Lauwerier, 1986). Kind (1999) explains 

the emergence of the “bi-stability” phenomenon  by means of  this type of 

‘local’ bifurcation. The existence of “bi-stability”, at our knowledge, has 

been shown in economic models only in Semmler-Sieveking (1993), 

Grasman (1994) and Manfredi-Fanti (1999), but the interpretation of such 

phenomenon has been different: in fact while Kind has attributed the co-

existence of two equilibria to the “local” “crater” bifurcation, Semmler-

Sieveking have shown such a co-existence by means of  a ‘global’ stability 

analysis while the other authors have attributed the phenomenon to a 

“relaxation” oscillation mechanism. 

The main simulative results are as follows: E1 is stable12 for large g 

(g>gHsub =2.903). Then it undergoes a subcritical Hopf bifurcation when g is 

equal to gHsub =2.903, a value close to but beyond the critical threshold 

defined by (11) (given by gH=2.89): this “catastrophic” bifurcation is a 

“crater” bifurcation. In this case for different starting points, the system 

shows different dynamics (see Fig. 2): i) in a region contained by an 

unstable limit cycle, the orbits converge to the fixed point; ii) outside this 

region the orbits form a closed cycle after some transients.  

For g<gH=2.89 trajectories starting sufficiently close to E1 initially diverge, 

and subsequently converge to a stable limit cycle, which is unique: the 

Hopf bifurcation is supercritical.  

 

                                                           
11 Moreover  phenomena like hysteresis loops and catastrophic transitions may all be 
described by this bifurcation scenario, as pointed out by Kind (1999).  
12 The conjecture emerging from our simulations is that E1 is globally asymptotically 
stable.  
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3.1.2 - Chaotic evidence. 

As is known, the existence of chaotic attractors can be proved analytically 

only in a few rather special cases, so that the presence of chaos is 

ascertained only numerically13. When g is further decreased (g<gC=2.2) 

complex behaviours14 arise15: this behaviour is very robust to further 

parametric changes and  in fact is present until g<gEX=1.8 when the 

trajectories explode (on yearly base this means that the chaos is present 

for an average lag in the period of formation  of the wage expected 

approximately from ten to thirteen months).  

The visual inspection reveals that the trajectories of the system wander 

erratically in a bounded region both of the phase plans w,  we (fig. 3) and 

of the phase space w,  we , Z (fig. 4).  

Finally the figure 5, based on a plausible parameter set generating a stable 

long run cycle, illustrates that also in the long period dynamic regime, 

periods of full employment alternates with periods of unemployment, so 

that, on average, long term unemployment appears (in fact in the long run 

regime the employment oscillates from periods of full employment to 

periods in which the rate of unemployment shows a maximum value of 

about18%). 

 Finally the appearance of a long run Phillips curve can be shown by fig. 6, 

where, simulating the model with the chaotic parameter set 

                                                           
13 At present “complete (though approximate) information of the structure of orbits of 
continuous dynamic systems of dimension greater than two…can only be obtained by 
numerically integrating the equations of the systems…” (Medio, 1992, pp. 82). 
14 We recall the usual caveats with respect to the effects of computing approximation in 
continuous-time formulation, above all when detecting chaos, for which we refer to 
Lorenz (1993), Appendix 4, 276-281. ). Our simulations  have been performed with the 
package DMC, fourth-order Runge-Kutta method, fixed step 0.01 and 0.005. 
15 The use of techniques for the global analysis of the system (8) in order to obtain an 
analytical or geometrical detection of “chaos” is beyond the scope of this paper (see 
Wiggins (1990)). The emergence of a chaotic attractor may be detected through several 
measures: 1) by “eye”; 2) through bifurcation diagrams; 3) through numerical and 
statistical tests. Among these, we remark the computation of 1) a Poincarè map by 
numerical-graphical techniques which in the case of a simple bi-dimensional surface of 
section, permits to identify different types of dynamic behaviour, as limit cycle, 
subharmonic oscillations, quasiperiodic oscillations and the presence of a strange 
attractor;  2) the dominant first-order Lyapunov exponent (for a reconstructed attractor) 
which whether is positive gives a sign of existence of  SDIC (Wolf at al, 1985); 3) the 
correlation dimension of the (reconstructed) attractor  which whether is a non integer 
number indicates a fractal structure of the attractor (Grassberger – Procaccia, 1983). 
Such computations (for sake of brevity not reported here) have confirmed the presence of 
deterministic chaos in the system (8). 
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abovementioned, an evident Phillips relationship appear by plotting the 

time variation of wages (dw/dt) and the excess labour supply (L-S). 

FIG. 2 - Trajectories in the phase plane (w,w°) displayed for three different 

initial conditions of w. 

FIG.  3 – Chaotic behaviour in the phase plane w, we. 

FIG.  4 – Three-dimensional view of the chaotic behaviour in the phase 

space w, we , Z. 

FIG. 5 – Time path of the rate of unemployment in a case of stable 

fluctuation. 

FIG. 6 -     A plot of the “Phillips” curve (restricted to the set (L-S)>0) 

4. Conclusions 

 

This paper has shown that regular fluctuations and chaotic behaviour of 

wages and employment may be a robust outcome of a ‘well-behaved’ 

neoclassical labour market, in which the importance of wage expectations 

in determining the level of employment and the equilibrium wage rate are 

recognised in line with the typical Friedman-Phelps version of the Phillips 

curve. As known the existing literature (e.g. Kierzkowski, 1980) has argued 

that  wage expectations should be formed in a different way by firms and 

individuals in order temporary deviations from natural rate of employment 

to take place in the “expectations augmented” neoclassical labour market. 

In contrast with the existing literature, this paper has shown that not only 

temporary but long term regular fluctuations and chaotic behaviour of 

wages and employment emerge as a robust finding also when firms and 

individuals have uniform expectations. In particular when the unique 

equilibrium of this economy is destabilised, then the economic variables 

(wage and demand and supply of labour) evolve toward a stable attracting 

region within which their motion is chaotic. In this region a behaviour 

‘reminiscent’ of the Phillips curve can be detected: this relationship is 

persistent in the long-run and it is not only a transitory disequilibrium 

phenomenon for a wage adjustment process converging to the equilibrium 

as postulated by the neoclassical interpretation of the Phillips curve16.  

                                                           
16 In the “trapping” chaotic region: a) the Phillips curve necessarily re-emerges as a long 
term phenomenon; b) the Walrasian equilibrium, viewed as the “center of mass” around 
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Finally we note that our dynamic results can be exploited for policy 

purposes17. To sum up, our results differ substantially from the common 

wisdom of the economic theory mainly in the following points: 1) also in 

the case in which price expectations are formed uniformly the economy will 

show sensible fluctuations in employment; 2) more interestingly, the cycle 

can be permanent and the equilibrium condition will not be  restored; 3) in 

the long run a Phillips-type behaviour occurs, but the points belonging to 

the Phillips’ curve emerging in our model are just the realisation of a single 

trajectory of the underlying (fully deterministic) process, rather than a set 

of different equilibrium points among which the policy maker could choose 

as in the traditional view of the curve; 4) the permanent fluctuations are 

also of Chaotic type, so mimicking very well the seemingly random 

behaviour of the rate of unemployment and offering a new deterministic 

and endogenous explanation of the employment fluctuations: in other 

words, in a fully neoclassical economy, fluctuations of real variables are 

not necessarily stochastically-driven as so far argued by the prevailing 

view of business cycles. 
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APPENDIX: Proofs of the main results. 

 

To investigate the stability of the Walrasian equilibrium E1=(w*, we*, Z*), 

we write  the following  jacobian, evaluated at E1 
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The jacobian leads to a third order characteristic equation with coefficients 

ai (i=0,1,2,3) defined as: φcgagagaa 2
3

2
210 ;;2;1 ====   (A.2) 

We note that   all the coefficients are always positive. Therefore the Routh-

Hurwitz test gives the following stability condition for E1: 

 

02 23
3021 >−=− φcggaaaa    (A.3) 

As g>cφ/2 the last inequality is always true, showing that the E1 

equilibrium is always locally asymptotically stable. On the contrary, when 

g<cφ/2, instability arises. This proves Proposition 2 and 3. 

We claim that a Hopf bifurcation arises when the equality: 

    02 23 =− φcgg      (A.4) 

holds. By solving (A.4) with respect to g we get18: 

    0
2

>=
φcgH       (A.5) 

                                                           
18 Obviously we disregards the zero (and the imaginary) solutions. 
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It is easy to check that only the solution gH being positive is adequate to 

represent the desired bifurcation process. This shows that a bifurcation 

value always exists. It is of interest  the shape of the bifurcation curve 

(A.5): the relation between g,c, i.e. the speeds of adjustment of the expected 

and of the current wage, is evident. Given the algebraic complexity of the 

function φ, it seems difficult to establish unambiguously the effects on 

cycles and stability of shocks on various parameters unless to resort to the 

calibration and numerical simulation. Fortunately we are able to 

analytically determine the relation between gH and both the technological 

index D and the preferences parameter S°: 1) positive shocks on the level of 

technological efficiency are always stabilising; 2) positive shocks on the 

preferences parameter are always destabilising. The proof is simple: in fact 

gH is a strictly increasing function of φ  and then in order to determine the 

effect of the parameters on the stability locus it is sufficient to investigate 

the function φ, for instance with respect to the two parameters of interest D 

and S°. By rewriting the function φ  as 
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it is straightforward to ascertain the role of D and S° in the following way: 
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To complete the proof of the appearance of a Hopf bifurcation of the E1 

equilibrium, let us now show that the pair of bifurcating eigenvalues cross 

the imaginary axis with nonzero speed. This is equivalent to show that 

(Liu, 1994):  
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which is always positive, thereby completing the proof of Proposition 4. 
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FIG 2.  Trajectories in the phase plane (w,w°) when g =2.9 (parameter 

set: a=0.488, b=0.4239, S°=0.5, D=1, c=4) displayed for three 

different initial conditions of w (given we(0)=Z(0)=w*=0.76): w(0)=2.55, 

w(0)=2, w(0)=1.8. Legend: wo= we;  w*= wage equilibrium value = 

0.76; ULC= unstable limit cycle; SLC = stable limit cycle . 
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FIG.3. Chaotic trajectories in the phase plane (w.w°), when 

g=2.12 (other parameters as in fig.2) (I.C.: w(0)=2.5, w°(0)=w°°(0)=0.76) 
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FIG. 4- Three-dimensional view of chaotic trajectories in the space 

(w,we,Z) when g=2.12  (other parameters as in fig.2) (I.C.: w(0)=2.5, 

we(0)=Z(0)=0.76) 

 

 

 
FIG. 5. Time path of the rate of unemployment U (U=1-L/S) 

(parameter set: a=0.5, b=0.2, S°=0.35, D=1, c=8.05, g=3.5; I.C.: 

we(0)=Z(0)=w*=0.85), w(0)=1.035). 
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FIG. 6 -   A plot of the “Pseudo-Phillips” curve (restricted to the 

set (L-S)>0) (parameter set as in fig. 3) 


