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Core-Periphery spatial pattern: high (low) productivity regions are in a proximate 

relationship with other high (low) productivity regions. Over the last twenty years, 

intra-distribution dynamics has generated long-run multiple equilibria with the 

formation of two clubs of convergence. The observed dynamics can be only marginally 

explained by capital accumulation and employment growth. In contrast, sectoral 

specialization and spatial dependence turn out to be more important factors. 
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���,QWURGXFWLRQ�

In this work we use a continuous state-space approach to analyze the intra-distribution 

dynamics (thereafter, ,'') (Quah, 1997; Magrini, 2004; Pittau and Zelli, 2007) of 

regional labour productivity in Europe over the period 1980-2002. In particular, we 

apply a robust nonparametric conditional density estimator (Hyndman and Yao, 2002) 

to describe the law of motion of regional labor productivity in Europe and compute the 

ergodic distribution to identify long-run properties of the observed distribution 

dynamics (Johnson, 2004). Moreover, using a two-step approach (Lamo, 2000; 

Bandyopadhyay, 2003; Leonida, 2003), we try to estimate the effect of some economic 

determinants on the long-run distribution. 

The advantages of the ,'' approach with respect to the growth regression analysis 

are well known (Quah, 2006). In particular, it allows to examine directly how the whole 

productivity distribution changes over time and, thus, it is much more informative than 

the convergence empirics developed within the regression paradigm which gives 

information only on the dynamics of the average economy. However, some important 

drawbacks also characterize the literature on ,''. First, while the regression approach 

to economic convergence has been improved in many respects over the last decade1, 

most of the studies based on the ,'' approach scantly take into account the recent 

developments of the statistical literature on conditional density (Hyndman HW�DO., 1996; 

Fan HW�DO�, 1996; Hall HW�DO�, 1999), which have highlighted the bias problems associated 

with the widely used standard kernel method and have proposed new estimators with 

                                                
1 Authors have proposed various estimators and econometric procedures to reduce bias and inefficiency 
of the regression estimates (e.g. IV and GMM estimators), to take account of spatial spill-over effects 
(spatial econometric techniques), to identify nonlinearities in growth behaviour (nonparametric and 
semiparametric regression techniques), to reduce model uncertainty (Bayesian approaches) and so on 
(Durlauf HW�DO. 2005). 
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better statistical properties. In the present paper, we try to overcome this limit by using 

log-likelihood conditional density estimators with variable bandwidths (Hyndman and 

Yao, 2002)2.  

Second, while testing conditional convergence hypotheses is a very common 

practice within the growth regression analysis, little effort is usually devoted within the 

,'' approach to investigate the determinants of the long-run (ergodic) distribution. 

Quah (1997) proposed a “conditioning” scheme which allows to analyze the role of one 

single variable per time. More recently, some attempts to detect the joint effect of many 

variables appeared in the literature (Lamo, 2000; Bandyopadhyay, 2003; Leonida, 

2003). In particular, a two-step approach is applied, where the first step consists of 

estimating a growth regression model, while in the second step the residuals from that 

regression are used to compute partial residuals and, thus, to estimate the conditional 

density functions having filtered out the effect of some growth determinants. However, 

all these studies use linear regression models to estimate the first step, disregarding the 

presence of nonlinearities in growth behavior widely highlighted in the growth 

regression literature (Liu and Stengos, 1999; Banerjee and Duflo, 2003; Basile, 2007b). 

In the present paper we overcome this limitation by applying modern semiparametric 

regression techniques (Wood, 2006) in order to remove the effect of growth 

determinants from conditional density estimations. 

We propose the two above mentioned methodological improvements (robust 

conditional density estimators and semiparametric regressions) in order to answer many 

                                                
2 Only recently, Johnson (2005) and Fiaschi and Lavezzi (2007) have applied kernel density estimators 
with adaptive bandwidths to solve in some way the bias problem of the standard kernel density estimator 
with fixed bandwidth. Basile (2007a) compares different conditional density estimators to analyze the 
cross-sectional distribution dynamics of regional per-capita incomes in Europe and shows, in particular, 
that, while the kernel estimator with fixed bandwidth gives evidence of convergence, a modified 
estimator with variable bandwidth and mean-bias correction provides evidence of strong persistence and 
lack of cohesion.  
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interesting questions: Are there convergence tendencies within the group of regional 

economies included in the sample? If not, does one observe any specific distribution 

pattern? Do high-productivity regions belong to a club of high-productivity economies, 

while low-productivity regions languish behind (club convergence hypothesis)? Finally, 

what are the factors that help explain the observed dynamics of the entire distribution? 

In particular, does capital accumulation explain the difference between growth paths of 

high- and low-productivity regions? Alternatively, what is the role of industrialization? 

Finally, does spatial dependence matter? 

The results of the analysis can be summarized as follows. First, the regional 

distribution of productivity in Europe is characterised by a clear Core-Periphery spatial 

pattern which contributes to determine a strong and increasing bimodality in the 

snapshot univariate density: high (low) productivity regions are in a proximate 

relationship with other high (low) productivity regions. Second, over the last twenty 

years, ,'' has generated long-run multiple equilibria with the formation of two clubs 

of convergence: regions with low levels of labor productivity at the initial period have 

hardly managed to get close to the European average productivity in 22 years. These 

multiple equilibria can be only marginally explained by capital accumulation and 

employment growth. In contrast, sectoral specialization and spatial dependence turn out 

to be more important factors. 

The layout of the paper is the following. In Section 2, we present a univariate 

analysis of regional labour productivity in Europe. In section 3, we report the results of 

the ,'' analysis. In Section 4, we apply the ‘multivariate’ conditioning scheme and 

discuss the shape of the ergodic distributions computed after having removed the effects 

of some growth determinants. Conclusions are reported in Section 5. 
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���$Q�([SORUDWRU\�6SDWLDO�'DWD�$QDO\VLV�

Most of the studies on regional convergence consider the per-capita GDP in order to 

measure regional unbalances. Some authors (Paci, 1997; Lopez-Bazo HW�DO., 1999) have 

criticized this choice, observing that GDP is measured at the workplace while 

population at the residence and, thus, the level of per-capita GDP may lead to great 

distortions in some regions due to the presence of commuting patterns.3 Based on the 

same considerations, here we analyse regional convergence of labour productivity, 

defined as the ratio between GVA (Total Gross Value Added) at constant prices 1995 

and total employment for a sample of 179 NUTS-2 European regions over the period 

1980-2002. Labour productivity levels are normalized with respect to the EU15 average 

in order to remove co-movements due to the European wide business cycle and trends 

in the average values. Data are drawn from the Cambridge Econometrics Dataset.  

Over the period 1980-2002 the standard deviation of the relative regional labour 

productivity has decreased by 15%, indicating a slight σ-convergence. However, 

standard deviations might mask some important features of the distribution. In fact, the 

snapshot densities reported in Figure 1 clearly display a bimodal distribution of labour 

productivity both in 1980 and in 2002, indicating the existence of two clusters of 

regions, respectively characterised by low and high levels of labour productivity (the 

first mode is situated between 0.75 and 0.80 times the EU average, while the second 

mode is situated at around 1.10).4 The reduction of the standard deviation is the 

                                                
3 Clear examples of this are Brussels in Belgium, Hamburg or Bremen in Germany, Inner London in the 
United Kingdom. 
4 Univariate densities have been estimated using the local likelihood density estimator (Loader, 1996). A 
variable bandwidth, selected by generalised cross validation (GCV), has been used together with a tricube 
kernel function. In order to allow time comparison, we have used the same span (α=0.47) for both years 
and evaluated the two univariate densities at the same set of data points. The evidence reported in Figure 
1 is very much in line with that obtained by Fiaschi and Lavezzi (2007) using an adaptive kernel density 
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consequence of the decrease in the mass at the extreme tails of the distribution, while 

the two peaks become more pronounced in the last year.  

Figure 1 

Even if it is beyond the scope of this paper to identify the exact composition of the 

two clusters, it remains important to search for spatial patterns in the distributions of 

labour productivity. For this purpose, we use different measures of global and local 

spatial dependence as well as different mapping tools. First, Figure 2 shows a 

choropleth map of the percentile distribution of regional labour productivity.5 This map 

allows highlighting the existence and persistence of a Core-Periphery pattern in the 

regional distribution of labour productivity in Europe. 

Figure 2 

Whether high (low) productivity regions are in a proximate relationship with other 

high (low) productivity regions can be more rigorously assessed by using spatial 

statistics. We have used distances-based binary matrices to calculate the global * 

statistic of spatial autocorrelation (Getis and Ord, 1992) defined as  

( ) ( )= ∑∑ ∑∑� � ��� ������ ���* G Z G [ [ [ [  (1) 

where �[  ( �[ ) is the value of labor productivity at regions L��M�, and ��Z  are the elements 

of the binary spatial weights matrix (that is, ones for all neighbours M within lag distance 

G of L and zeros for all locations greater than G from L). A high positive value of the 

standardized * statistic, ( ) ( )
( )1 2

−
=

* ( *
= *

9 *
, indicates that the spatial pattern is 

                                                                                                                                          
estimator. Following Fiaschi and Lavezzi (2007), we have also applied a bimodality test based on the 
bootstrap procedure suggested by Efron and Tibshirani (1993). The p-values of this test are equal to 0.032 
for the 1980 and to 0.000 for the last year, indicating the rejection of the unimodality hypothesis. 
5 In order to overcome (or, at least, to limit) the shortcomings of the crude classification of data points in 
few (usually 4 or 5) classes, we have imposed 100 breaks points - that is one for each percentile point - 
thus approximating an un-classed choropleth map (Fotheringham HW�DO., 2000).  
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dominated by clusters of high values, while a strong negative =�*� indicates that the 

spatial pattern are dominated by clusters of low values. 

Standardized * variates were computed for lag distances from 400 km (the 

minimum distance allowing all regions to have at least one link) up to and including 

2000 km at 50 km intervals. Figure 3 shows a non-monotonic relation between distance 

cut-off and global spatial autocorrelation: =�*� is always positive but it reaches a 

maximum when the cut-off distance equals 900 km; above that limit, =�*� values 

decrease. 

Figure 3 

Global * statistic is, however, based on the assumption of stationarity or structural 

stability over space, which is obviously unrealistic in our context. Spatial association 

must be detected using local spatial autocorrelation indices which allow for local 

instabilities in overall spatial association. Local *	*  indices are defined as follows (Ord 

and Getis, 1995): 

( ) ( )*
 
� � �� �* G Z G [ [ M= ∀∑ ∑  (2) 

with 0� �Z ≠ . In our context, *	*  is a measure of local clustering of labor productivity 

around region L��If high (low) values of [ tend to be clustered around L, the standardized 

*	*  will be positive (negative). No longer committed to the global pattern, local *	*  

statistics are free to characterize the spatial autocorrelation of attribute values located 

within a distance of each target value. Figure 4 presents standardized **  variates for lag 

distances of 400 and 900 km for both 1980 and 2002. A typical Core-Periphery 

structure clearly emerges for both years: a cluster of high-productivity regions is located 

in the Centre of Europe (grey color), while groups of peripheral regions are 
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characterized by negative standardized **  scores (black color). Regions with a white 

color are those with a non-significant value of ** .6 For a cut-off distance of 900 km, 

the cluster of high-productivity regions is much larger, indicating that the territory 

becomes more homogenous.  

Figure 4 

Finally, standardized **  scores have been used to assess whether the bimodality 

observed in the distribution of labour productivity is still present when we consider 

spatially smoothed data. Figure 5 shows snapshot densities of local G* values. Visual 

inspection, supported by the bimodality test of Efron and Tibshirani (1993), suggests 

that the null hypothesis of unimodality cannot be accepted for spatial weights matrices 

based on cut-off distances lower or equal to 600 km. For higher lag distances, 

bimodality disappears. 

Figures 5 

���,QWUD�GLVWULEXWLRQ�PRELOLW\�

The univariate analysis carried out so far has allowed us to identify soma interesting 

features of regional labour productivity data. Nevertheless, that analysis did not give us 

any information on the changes of the relative position of various regions in the cross-

section distribution of labor productivity over time. However, this issue is relevant for 

assessing the evolution of regional disparities. In order to address this drawback, it is 

necessary to examine the intra-distribution mobility during the study period following 

                                                
6 The critical values of the *	*  statistic are given in Ord and Getis (1995). 
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the transition dynamics approach developed by Quah (1993, 1996a, 1996b, 1996c, 

1997).7  

Given the distribution of regional productivity in period W and its associated 

probability measure, φ � , this approach consists of describing the law of motion of the 

stochastic process { }t , 0≥Wφ . If this process is assumed to be time-homogenous and 

first-order Markov, than the law of motion for { }t , 0≥Wφ  is 

( ) ( ) ( )
0

|� �\ I \ [ [ G[τ τφ φ
∞

+ = ∫   (3) 

where ( )|I \ [τ  is the expected density of \ (the productivity levels at time W�τ) 

conditional upon [� (the productivity levels at time W). In other words, the conditional 

density ( )|I \ [τ  describes the probability that a given region moves to a certain state of 

relative productivity given that it has a certain relative productivity level in the initial 

period. For analyzing ,'', a researcher must estimate ( )|I \ [τ  and visualize the 

output, that is the shape of the productivity distribution at time W�τ over the range of 

productivity levels observed at time W.  

The ergodic distribution is the limit of (3) as τ tends to infinity (Johnson, 2004): 

( ) ( ) ( )
0

|
∞

∞ ∞= ∫\ I \ [ [ G[τφ φ   (4) 

This function describes the long-term behavior of the productivity distribution: it is the 

density of what the cross-region productivity distribution tends towards, should the 

system continue along its historical path (Quah, 2006). 

                                                
7 “Distribution dynamics considers not just the time-path of income distributions – each distribution 
treated as a point-in-time snapshot – but also a law of motion or a mechanism for how the distribution at 
one time point evolves into that at a later time” (Quah, 2006, p. 14) 
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Operationally, the WUDQVLWLRQ� G\QDPLFV� DSSURDFK consists of estimating and 

visualizing the conditional density of \�given�[. The most popular approach within the 

,'' literature is the kernel density estimator with fixed bandwidths. However, this 

estimator has some undesirable bias properties (Hyndman HW� DO., 1996) which, in the 

context of the ,'' analysis, might bring to get, for example, evidence of convergence 

while there is persistence (Basile, 2007a). Fortunately, more robust estimators have 

recently been developed in the literature. In particular, Hyndman and Yao (2002) have 

proposed a local linear conditional density estimator which is a conditional version of 

Loader’s (1996) density estimator used in section 2 (see Appendix 1). In the present 

paper we use this approach to estimate the conditional density of regional labour 

productivity at 2002 (the last year) given the distribution at 1980. 

The results are plotted in Figure 6. These graphical methods for visualizing 

conditional density estimates, developed by Hyndman HW� DO. (1996) and Hyndman 

(1996), are not common in the literature of ,'' and, thus, a preliminary discussion on 

their features is necessary.8 The first plot, called the “VWDFNHG�FRQGLWLRQDO�GHQVLW\�SORW” 

(figures 6A), displays a number of conditional densities plotted side by side in a 

perspective plot.9 It facilitates viewing the changes in the shape of the distributions of 

the variable observed for the 2002 over the range of the same variable observed for the 

1980. In other words, like a row of a transition matrix, each univariate density plot 

describes transitions over the analyzed period from a given productivity value in 1980. 

                                                
8 All of the studies on ,'' which make use of nonparametric stochastic kernel density estimators provide 
three-dimensional perspective plots and/or the corresponding contour plots of the conditional density to 
describe the law of motion of cross-sectional distributions. In such a way, they treat the conditional 
density as a bivariate density function, while the latter must be interpreted as a sequence of univariate 
densities of relative productivity levels conditional on certain initial levels.  
9 Each univariate density plot is always non-negative and integrates to unity. Since the conditional density 
plot has been evaluated on an equispaced grid of 100 values over the range of [ and \ directions, figure 
6A displays 100 stacked univariate densities. 
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Hyndman HW�DO� (1996) note that this plot is “PXFK�PRUH�LQIRUPDWLYH�WKDQ�WKH�WUDGLWLRQDO�

GLVSOD\V�RI�WKUHH�GLPHQVLRQDO�IXQFWLRQV�VLQFH�LW�KLJKOLJKWV�WKH�FRQGLWLRQLQJ” (p.13).  

The second type of plot proposed by Hyndman HW� DO. (1996) is the “KLJKHVW�

FRQGLWLRQDO�GHQVLW\�UHJLRQ” (+'5) plot (figures 6B). Each vertical band represents the 

projection on the [\ plan of the conditional density of \ on [. In each band the 25% (the 

darker-shaded region), 50%, 75% and 90% (the lighter-shaded region) +'5s are 

reported. A high density region is the smallest region of the sample space containing a 

given probability. These regions allow a visual summary of the characteristics of a 

probability distribution function. In the case of unimodal distributions, the +'5s are 

exactly the usual probabilities around the mean value; however, in the case of 

multimodal distributions, the +'5 displays different disjointed subregions.  

The +'5 plot is particularly suitable to analyze ,''. If the 45-degree diagonal 

crosses the 25-50% +'5s, it means that most of the elements in the distribution remain 

where they started (there is ‘SHUVLVWHQFH¶). If the horizontal line traced at the one-value 

of the vertical axis crosses DOO the 25-50% +'5s, we can say that there is ‘JOREDO�

FRQYHUJHQFH¶ towards equality. If the vertical line traced at the one-value of the 

horizontal axis crosses DOO the 25-50% +'5s, we can say that there is ‘JOREDO�

GLYHUJHQFH¶. Finally, the presence of nonlinearities in the modal regression functions 

(shown in the plot as bullets) can be interpreted as an evidence in favor of the 

‘FRQYHUJHQFH�FOXE’ hypothesis, according to which regions catch up with one another 

but only within particular sub-groups. 

Figure 6 shows the existence of two convergence clubs: regions sufficiently close to 

each other converge towards each other. The first club is composed of regions with a 

relative productivity level at 1980 ranging between 0.2 and 0.7 times the EU15 average; 
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the second club is composed of regions with a relative productivity level at 1980 

ranging between 0.95 and 1.6 times the EU15 average. At the two tails of the 

distribution, we can observe some bimodality in the conditional density function 

suggesting the existence of some dualistic behaviour: a few regions with very low and 

very high productivity levels do not converge to any level; rather they tend to persist in 

their relative positions. Finally, an intermediate area, composed of regions with a 

relative productivity level at 1980 ranging between 0.7 and 0.95 times the EU15 

average, can be classified as an area of persistence.  

The shape of the ergodic distribution (Figure 7) suggests that, in the long run the 

European system might tend towards some reduction of regional unbalances even if the 

twin-peaks property remains: the first peak of the stationary distribution occurs at a 

slightly higher relative productivity level than that of the initial distribution; the second 

peak is much higher than that of both the initial and the final distributions and a 

decrease in the mass at the extreme tails of distribution occurs.10 

Figure 7 

���7KH�HIIHFW�RI�JURZWK�GHWHUPLQDQWV�

����7KH�FRQGLWLRQLQJ�VFKHPH�

The analysis carried out so far can be interpreted as a test of the hypothesis of “DEVROXWH�

FRQYHUJHQFH”, since it does not control for the heterogeneity in the structural 

characteristics of the regions (in terms of technologies, employment growth rates, 

saving rates, sectoral specialization, spatial dependence and so on; see Galor, 1996). 

                                                
10 The ergodic distribution functions reported in Figure 7 have been computed starting from the transition 
matrices extracted from each conditional density estimation. In order to compare univariate density 
functions (at 1980 and 2002) and the ergodic distribution, conditional densities have been evaluated at the 
same data points at which the initial density function was firstly evaluated. 



 13 

Having rejected such hypothesis and having assessed that European regions tend 

towards different long-run equilibria (the “FOXE� FRQYHUJHQFH”� hypothesis cannot be 

rejected), it remains to test the “FRQGLWLRQDO� FRQYHUJHQFH” and the “FOXE� FRQGLWLRQDO�

FRQYHUJHQFH” hypotheses, that is it remains to understand why low-productivity regions 

do not tend to converge (in the long run) with high-productivity regions. In other words, 

our task is now to identify those factors that determine the formation of club 

convergence. Removing the effect of such factors, the evidence of bimodality in the 

ergodic distribution should disappear. 

Some recent studies on ,'' have already proposed interesting methodologies to 

remove the effect of some determinants of economic growth from the realized mobility 

dynamics across a sample of economies (Lamo, 2000; Leonida, 2003; Cheshire and 

Magrini, 2006). All these studies have used a two-step procedure consisting of, first, 

estimating a linear parametric growth regression and, then, using the residuals from this 

regression to simulate end-period log-relative labor productivities which, through the 

estimation of the conditional density function, enable to analyze the effect of different 

variables in shaping the dynamics of cross-regional distribution of labor productivity.  

Let describe this procedure more formally. First, define ( )ln ln �\ *'3 (03
+τ

=  

and ( )ln ln �[ *'3 (03= . Thus, the growth rate of labour productivity can be 

expressed as ( )ln ln\ [γ = − τ . Now, note that the conditional density function, 

( )|I \ [ ��can be written as ( )( )exp ln |I [ [+ τγ . We can use this formulation to study 

the effect of any explanatory variable on the ,'' of labour productivity, by defining  

( )( )( )ˆexp lnI [ [+ τ γ − γ  (5) 

where γ̂  is the growth rate predicted from a regression model. 
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This approach is much more appealing than the original conditioning scheme 

proposed by Quah (1997), since it allows to conditioning out the effect of many 

variables jointly. A shortcoming of this method is, however, evident: it imposes 

linearity in the functional form of the growth regression equation within a (flexible) 

nonparametric framework aimed (among other things) at identifying nonlinearities and 

convergence clubs. In the present paper, we propose to use, for the first step, a 

nonparametric or a semiparametric additive model which allows identifying 

nonlinearities in growth behavior.  

����7KH�VSHFLILFDWLRQ�RI�WKH�QRQSDUDPHWULF�JURZWK�UHJUHVVLRQ�DGGLWLYH�PRGHOV�

The choice among which variables to include in a growth regression model varies 

greatly in the empirical literature. The range of potential factors suggested by economic 

theory is indeed very large. This raises the problem of model uncertainty that should be 

properly taken into account using Bayesian approaches to data analysis (Durlauf HW�DO., 

2005). This issue goes beyond the scope of the present paper. However, in the case of 

European regions, many studies have already demonstrated that sectoral composition of 

economic activity (Paci and Pigliaru, 1999) and spatial dependence (Lopez-Bazo HW�DO. 

2004; Basile, 2007b) help explain a large portion of heterogeneity in growth behaviour, 

together with the Solow-type conditioning factors (physical capital accumulation, 

employment growth and, obviously, initial conditions).11 Therefore, we consider five 

different nested and non-nested models: 

                                                
11 Spatial dependence and sectoral specialization may be also important sources of multiple steady-state 
equilibria and club convergence. For instance, in a two-sector overlapping-generation model in which a 
distinction is made between consumption goods and investment goods (Galor, 1992), multiplicity of 
steady-state equilibria occurs under a less restrictive set of assumptions than those required in the one-
sector model. Ertur and Kock (2006) propose an augmented Solow-type model with spatial externalities 
(spatial knowledge spillovers) between economies and provide an equation for the steady state level as 
well as a conditional convergence equation characterized by parameter heterogeneity: since knowledge 
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γ = α + β + φ + ε + + δ 

1 1ln ln
�L

[
Q J

      (6) 

( )
  

γ = α + + + ε   + + δ  
2 1 2 2ln ln

�L
V [ V

Q J
     (7) 

( ) ( ) ( )    
γ = α + + + ρ γ + θ + ε     + + δ + + δ    

∑3 3 4 5 3ln , ln ln , ln ln
� � � ��� ���������� � ��� ��� "!  "!  (8) 

( ) ( )
    

γ = α + + + ρ γ + ε     + + δ + + δ    
4 6 7 8 4ln , ln ln , ln

# #L L
V [ : [ V : V :

Q J Q J
 (9) 

( ) ( )5 9 10 5ln ln ln
$ % %%

V
V [ V < <

Q J

  
γ = α + + + θ + ε   + + δ  

∑   (10) 

The former (eq. 6) is the standard “6RORZ�JURZWK�UHJUHVVLRQ�PRGHO”. The first term 

on the right hand side, ln [ , captures the effect of interregional differences in initial 

aggregate productivity on interregional differences in growth rates. The second term, 

 
 + + δ 

ln
&L

Q J
, captures the combined effect of the investment ratio ( 'L , 

investment/GDP), the employment grow rate (Q), the depreciation rate (δ) and the 

growth rate of technology (J). The second model specification (eq. 7) can be viewed as 

a “QRQOLQHDU�6RORZ�JURZWK�UHJUHVVLRQ�PRGHO”, where both ln [  and 
 
 + + δ 

ln
&L

Q J
 enter 

as smooth additive terms (see, for example, Liu and Stengos, 1999). 

The third specification (eq. 8) allows to test the effects of spatial dependence and 

sectoral specialization on regional growth and convergence. Recently, the role of spatial 

dependence has been theoretically and empirically investigated by Lopez-Bazo HW� DO. 

(2004), Ertur and Kock (2007) and Basile (2007b). These studies suggest that the 

                                                                                                                                          
spill-overs are local - rather than global - in scope, multiple equilibria (and, thus, convergence clubs) do 
emerge. 
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growth rate can be a negative function of initial conditions of the regions and a positive 

function of the initial conditions of their neighbours ( )ln , ln[ : [ . It is also a positive 

function of reproducible factors accumulation rates observed within the regions and in 

their neighbours, 
    
     + + δ + + δ    

ln , ln
( (L L

:
Q J Q J

. As in Basile (2007b), the effect of 

these variables are captured by introducing nonparametric interaction terms in the 

model. Compared to eq. 7, eq. 8 includes another spatially lagged term, ( )5 )V : γ , 

which represents the rate of growth in the neighbouring regions.  

Eq. 7 includes some linear terms, ( )ln ** < <∑ , where +<  is the value added 

produced in sector M by each region. These terms should allow us to estimate the linear 

effect of differences in the sectoral composition of GDP on regional variations of 

productivity growth rates. In particular, this model allows us to test the hypothesis that 

if the productivity growth rate of a particular sector lags that of the other sectors, 

regions with largest specialization in that sectors tend to exhibit the slowest aggregate 

productivity growth. Those scholars that have previously tested such hypothesis 

(Dowrick and Gemmel, 1991; Leonida, 2003) have focused on broadly-defined sectors, 

such as agriculture and industry. Here, we try to use more finely defined sector 

specialization exploiting Cambridge Econometrics information on sectoral value-added 

of European regions in 14 sectors12. Of course, it is not convenient to introduce so many 

variables in our eq. 8 because of the potentially high multiple correlation between these 

                                                
12 The sectors considered in the dataset are: Agriculture, Forestry and Fishing (categories A+B of the 
NACE rev. 1, the Classification of Economic Activities in the European Community); Mining and Energy 
(C); Food, Beverages and Tobacco (DA); Textile and Clothing (DB+DC); Electronics (DL); Fuels, 
Chemicals, Rubber and Plastic products (DF+DG+DH); Transport equipment (DM); Other manufacturing 
(DD+DE+DI+DJ+DK+DN); Construction (F); Wholesale and Retail (G); Hotels and Restaurants (H); 
Transport and Communications (I); Financial Services (J); Other market services (K); Non-market 
services (L+M+N+O).  
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variables. Thus, we have used a principle component analysis in order to reduce the 

number of dimensions without loss of information.13 Precisely, the first 5 components 

explain 73% of the overall variability. In a preliminary analysis, we introduced these 5 

components in the regression model and found that only the first 3 were significant. 

These components (which explain 67% of the overall variability) have also a quite clear 

interpretation. The first one (3&��) indicates a very strong dependence between 

electronics, transport and equipment and other manufacturing (a miscellanea of 

industries including metal, paper, wood, non-metallic mineral products, and machinery); 

thus, we define this components as “6SHFLDOL]DWLRQ� LQ� KLJK�WHFK� DQG� VFDOH�LQWHQVLYH�

VHFWRUV”. The second component (3&��) indicates a strong dependence between 

agriculture, hotel and restaurant, textile, clothing and footwear and, thus, we define it as 

“6SHFLDOL]DWLRQ� LQ� ORZ�WHFK� DQG� WUDGLWLRQDO� VHFWRUV”. The third component identifies 

strong dependence between service sectors and it is defined as “6SHFLDOL]DWLRQ�LQ�PDUNHW�

DQG� QRQ� PDUNHW� VHUYLFHV”. This empirical strategy allows us to overcome the long-

debated issue on whether industrialized economies outperform rural economies. The 

role of specialization within the manufacturing on growth behavior, and in particular the 

effect of specialization in high-tech vs. low-tech or traditional sectors, represents a more 

important issue to be investigated. Finally, model defined in equations 9 and 10 are 

nested models into eq. 8.  

Additive models specified in eq. 7-10 have been estimated using a mixture of 

parametric linear terms and bivariate thin-plate regression splines and applying the 

method described in Wood (2006) that allows integrated smoothing parameter selection 

                                                
13 We might have introduced the sector composition variables as smooth terms. However, again, 
estimating 14 smooth additional terms would have required a large amount of degree of freedom. 
Moreover, we cannot exclude the existence of “concurvity” (the nonparametric analogue of collinearity), 
which may lead to statistically unstable contributions of variables to additive models and, thus, may 
impact the interpretation of the additive fits. 
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via *&9� (see Appendix 2)� This method (implemented in the R package PJFY) helps 

overcome the difficulties of model selection typical of the AM framework based on 

back-fitting developed by Hastie and Tibshirani (1990). 

����5HJUHVVLRQ�UHVXOWV�

Tables 1 and 2 report the results and a series of diagnostic statistics for the five models. 

The proportion of deviance explained ranges from 45.1% (linear Solow model) to 

74.7% (model 3 - eq. 8), while the *&9 score reaches the lowest level with model 3, 

clearly suggesting that the most general specification encompasses all the others. 

Moreover, the hypotheses of normality, constant variance and no spatial dependence in 

the residuals cannot be rejected only in the cases of models 3 and 4; the residuals from 

models 2 and 5 are strongly nonlinear and show significant spatial dependence, while 

those from model 1 have also non-constant variance. All this suggests that spatial 

dependence must be explicitly taken into account in order to avoid misspecification 

problems and that sectoral specialization partially contributes to explain heterogeneity 

in regional growth behavior in Europe. 

Tables 1 and 2 

The linear coefficients of model 1 (the standard Solow growth model) have the 

expected sign and are significantly different from zero. The coefficient β associated to 

the linear term ln [  is –0.987, while the coefficient φ connected to the linear term 

ln
&V

Q J

 
 + + δ 

 is 0.311. The )-tests for the overall significance of the smoothed terms in 

AMs 2-5 have p-values lower than 0.001, while the number of effective degrees of 

freedom (e.d.f.) suggests that the relationship between growth rates and Solow-growth 

determinants is far from being linear. Finally, the parameters associated to the linear 
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terms of the semiparametric model 3 are respectively 0.071, -0.057 and 0.137 and are all 

significantly different from zero. Thus, regions with a higher specialization in “KLJK�

WHFK�DQG�VFDOH�LQWHQVLYH�VHFWRUV” or in “PDUNHW�DQG�QRQ�PDUNHW�VHUYLFHV” have expected 

higher growth rates, while regions with a higher specialization in “ORZ�WHFK� DQG�

WUDGLWLRQDO�VHFWRUV” have lower expected growth rates. 

To save space, we only discuss graphical results for model 3 (Figure 8). The vertical 

axis reports the scale of productivity growth rates; the axes on the plane report the scale 

of each independent variable and of its correspondent spatial lag. Figure 8A shows the 

estimated effect of the interaction between ln [  and the correspondent spatial lag, 

ln: [ , on the growth of labour productivity. It clearly suggests that regions surrounded 

by higher productivity regions have higher expected growth rates than regions with a 

lower-productivity neighbourhood. Thus, while very low-productivity regions have 

generally higher expected growth rates, as it is predicted by the Solow growth model, 

those with high-productivity neighbours have the highest rates of growth. Moreover, 

even very high-productivity regions (which are closer to their steady state and, thus, 

have lower margins for catching up) have chance to grow faster when surrounded by 

high-productivity regions. 

As expected, the effect of the interaction between ln [  and ln: [  is also 

characterized by strong nonlinearities. However, one can also observe that the marginal 

effect of ln [  appears to be quasi-linear, in contrast with the two-convergence club 

picture depicted in Figure 6. But, it is important to say that this result is obtained only 

after having controlled for the effect of spatial dependence. In fact, the marginal effect 

of ln [  from model 5 (Figure 9) allows to identify two negatively-sloped segments, 

indicating two groups of regions converging towards different steady states, and a zero-
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sloped segment in the middle, indicating the presence of a non-converging group of 

middle-productivity regions. 

Figure 8B shows the marginal effect of the interaction between 
 
 + + δ 

ln
&L

Q J
 and 

 
 + + δ 

ln
,L

:
Q J

. First, some nonlinearities in the effect of the rate of capital 

accumulation are clearly detected: an increase in the rate of capital accumulation is 

associated with an increase in growth rate only when 
 
 + + δ 

ln
,L

Q J
 is above a certain 

threshold. Moreover, the growth rate of a region is also a positive function of the capital 

accumulation rate in the neighbours.  

Model 3 included another term, ( )5 -V : γ , measuring the smooth effect of the rate 

of growth in the neighbouring regions, the so-called spatial externalities effect. Of 

course, this term cannot be considered as exogenous. Thus, miming the spatial two-

stage least-square procedure (Kelejian and Prucha, 1998), we have adopted an 

instrumental variable approach, using smoothed spatially lagged exogenous variables as 

instruments for the spatially lagged dependent variable.14 Figure 8C shows the fitted 

smooth functions ( )5ˆ γ .V :  alongside Bayesian confidence intervals (Wood, 2004). The 

vertical axis reports the scale of the expected values of relative regional growth rate; the 

horizontal axis reports the scale of the spatial lag of the relative growth rate. The ) test 

suggests that overall this term has a significant nonlinear effect on the expected growth 

rate. In particular, the spatial autocorrelation curve first increases and then it slopes 

                                                
14 Specifically, we have used smooth terms of the second order spatial lags of ln [ and of 

 
 + + δ 

ln
,L

Q J
, as well as first order spatial lags of 3&��, 3&�� and 3&��. 
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downwards (Figure 8C). Thus, it seems that positive spatial spillovers occur up to a 

certain threshold, beyond which competition effects prevail so that regions surrounded 

by very-high-growth regions have a lower expected growth rate than regions surrounded 

by medium-growth regions. 

����&RQGLWLRQHG�HUJRGLF�GLVWULEXWLRQV�

The econometric results discussed in the previous section have provided strong 

evidence of nonlinearities in the effect of initial conditions and of capital accumulation, 

thus suggesting that the linear Solow growth model suffers from misspecification 

problems. They have also highlighted the importance of sector specialization, casting 

some doubt on the validity of the one-sector growth model. Moreover, some 

specifications have allowed identifying the effect of interactions between the 

characteristics (initial conditions and physical capital investment) of each region and 

those of its neighbours, confirming the prediction of recently developed spatial 

neoclassical growth models (Ertur and Kock, 2007).  

This section reports the results of the ergodic distributions computed after having 

removed the effect of growth determinants. In practice, we have first re-estimated eq. 7-

10 without the smooth term ( )lnV [  and the constant term in order to compute the 

prediction γ̂  and, thus, estimate conditional densities as in eq. 5. Then, we have 

estimated ‘conditioned’ ergodic distributions using the transition matrices extracted 

from each conditional density estimation and compared them with the ‘unconditioned’ 

ergodic distribution (Figure 7). 

Figure 7B reports the ergodic distribution computed after having removed the 

smooth effect of capital accumulation from the actual productivity growth rate. This 

graph suggests that, even if capital accumulation has a positive and significant effect on 
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productivity growth, it does not contribute to explain the long-run distribution of 

regional labor productivity: the shape of the ergodic distribution remains bimodal with 

the two peaks almost at the same point and at the same height as in Figure 7A.  

Some differences between the ‘unconditioned’ and ‘conditioned’ ergodic 

distributions emerge when the effect of sector specialization is removed from the actual 

productivity growth rate (Figure 7E). In particular, even if the ergodic distribution 

remains clearly bimodal, the first peak becomes less pronounced while the second one 

moves to the right, indicating some more regional convergence in the long run. 

A clear transformation of the ergodic distribution appears only after having filtered 

out the effect of spatial dependence. Figures 7C and 7D show how the evidence of 

convergence clubs (bimodality) disappears when we control for spatial interaction in 

empirical growth regression (eq. 8-9), even if residual bumps characterize the long-run 

distribution. 

���'LVFXVVLRQ�DQG�FRQFOXVLRQV�

In this paper we have used a continuous state-space approach to analyze the distribution 

dynamics of regional labor productivity in Europe over the period 1980-2002. The 

results confirm the existence of multiple equilibria in regional growth behavior in 

Europe with the formation of two clubs of convergence, which have also a clear spatial 

patterns: high productivity regions mainly located in the core of Europe tend to 

converge to high productivity levels, while most of the peripheral regions belong to the 

low productivity club of convergence.  

Using a two-step approach, we have also analyzed the determinants of the shape of 

the long-run (ergodic) distribution of regional labor productivity. The results suggest 

that observed dynamics can be only marginally explained by capital accumulation. In 
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contrast, spatial dependence is primarily responsible for the bimodality in the long-run 

distribution of labor productivity. Finally, our findings imply that sector specialization 

matters, thus casting some doubt on the validity of the one-sector neoclassical growth 

model. 

Policy implications 
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$SSHQGL[�����/RFDO�OLQHDU�FRQGLWLRQDO�GHQVLW\�HVWLPDWRUV�

The most common estimator of the conditional density widely used in the literature of ,'' is 

the kernel estimator, firstly proposed by Rosenblatt (1969). Recently, Hyndman HW� DO� (1996) 

have explored its properties. They define:  

( ) ( )
1

1ˆ |
/ 0 100

\ <
I \ [ Z [ .

E E
τ

=

 − 
=    

∑  

where 

( )
1

2 34 5 54 3
[ ;[ ;

Z [ . .
D D=

 − − 
 =       

∑  

Thus, the conditional density estimator can be interpreted as the Nadaraya-Watson kernel 

regression of 
6 7\ <

.
E

 − 
   

 on ; 8 . As it is well known, the Nadaraya-Watson estimator can 

present a large bias both on the boundary of the predictor space, due to the asymmetry of the 

kernel neighbourhood, and in its interior, if the true function has substantial curvature or if the 

design points are very irregularly spaced. 

Given the undesirable bias properties of the kernel smoother, Hyndman and Yao (2002) 

have proposed a local likelihood conditional density estimator, which is a conditional version of 

Loader’s (1996) density estimator. Let 

( ) ( )( )
2

0 1 0 1
1

, ; , exp
=

  −   −  = − − −            
∑β β β β
9 : :; <::

\ < [ ;
5 [ \ . ; [ .

E D
 

where ( )0 1
ˆ ˆ ˆ,β = β β  is that value of β  which minimizes ( )0 1, ; ,5 [ \β β . The local linear 

density estimator at a focal point [ is then defined as ( ) 0
ˆˆ |I \ [ = β . This estimator has a 

smaller bias than the Nadaraya-Watson estimator. All conditional densities in the present paper 

have been estimated using Hyndman and Yao (2002). Optimal bandwidths, D and E, have been 

selected using the method developed by Bashtannyk and Hyndman (2001) based on GCV. 

$SSHQGL[����$GGLWLYH�PRGHOV�ZLWK�LQWHJUDWHG�PRGHO�VHOHFWLRQ�

Additive models (AM) provide a framework for nonparametric and semiparametric modeling. 

In general the model has a structure something like:  

( ) ( ) ( )*
1 1 2 2 3 3 4, ...= + + + + + ε= = = = =>= =\ V [ V [ V [ [;  ?ε ∼ ( )2. . . 0,σL L G 1   (A1) 
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where \ @  is an univariate response continuous variable, *A
;  is a vector of strictly parametric 

components,  is the corresponding parameter vector and ( )..BV  are smooth functions of the 

covariates, C[ . The estimated function ( )ˆ ..V  can reveal possible nonlinearities in the effect of 

[D .  
The most popular approach for estimating AM is the back-fitting algorithm proposed by 

Hastie and Tibshirani (1990). This approach, however, presents some shortcomings with respect 

to the issues of model selection and inference. Wood (2000, 2006) and Wood and Augustin 

(2002) have recently proposed a new method to estimate AM with spline based penalized 

regression smoothers which allows for automatic and integrated smoothing parameters selection 

via Generalized Cross Validation (GCV). Wood has implemented this approach in the R 

package PJFY. 

In the case of a model containing one smooth function of one covariate ( ( )= + εE E E\ V [ ), 

the penalized regression spline arises as the solution to the following optimization problem:  

2
min − + λ

F
; \ 6   (A2) 

w.r.t. E (the parameter vector). ⋅  is the Euclidean norm and 6  is a positive semi-definite 

matrix depending on the basis functions evaluated at [. Given λ� (a constant smoothing 

parameter), the solution to (A2) is:  

1ˆ G G−
 =  ; ; � 6 ; \   (A3) 

A crucial issue in the use of smoothing splines is the selection of parameter λ, controlling 

the trade-off between fidelity to the data and smoothness of the fitted spline. Generalized Cross 

Validation (GCV) is the most common method used to choose the smoothing parameter: 

( )
( )

2

2

Q
*&9

Q WU
λ =

 − 

\ � $\

$
 (A4) 

where $ is the hat matrix for the model being fitted: 

1−
 λ 
 

∑
H HII; ; ; � 6 ; , and the term 

tr($) gives the estimated degrees of freedom of the model. The best λ �is the one that minimizes 

GCV.  

When there are two or more smoothed terms (e.g. ( ) ( )1 1 2 2= + + εJ J J J\ V [ V [ ), the selection 

of the smoothing parameters becomes less straightforward. Consider first the back-fitting 

algorithm proposed by Hastie and Tibshirani (1990). It consists of estimating each term by 

iteratively smoothing partial residuals from the AM w.r.t the covariate that the smooth relates 
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to. Thus, given the bandwidth of the smoothers, the estimation of smooth terms becomes 

straightforward with back-fitting. However, “estimation of that bandwidth is hard to integrate 

into a back-fitting approach” and the choice of the degree of smoothness of each term in the 

model becomes arbitrary (Wood and Augustin, 2002, p. 2). To overcome this problem, Wood 

(2000) provides a methodology to choose automatically multiple smoothing parameters by 

GCV, as in the single-penalty case. First, he suggests to write the model fitting problem with an 

extra “overall” smoothing parameter (ρ) controlling the trade-off between model fit and overall 

smoothness:  

( ) 2

1

min
=

− ρ + λ∑
K L

M MM; \ 6   (A5) 

w.r.t. E� subject to the linear constraint &E� = 0, where & is a matrix of known coefficients 

defining the constraints. The smoothing parameters, ρ and O, are estimated by minimizing the 

GCV score:  

( )
( )( )
( )( )

2

2

,
,

,

ρ
ρ =

 − ρ 

Q
*&9

Q WU

\ � $ \

$
  (A6)  

w.r.t. the relative smoothing parameters, O/ρ. Problems (A4) and (A6) are solved iteratively:  

1. given the current estimates of the relative smoothing parameters, estimate the overall 

smoothing parameter using single smoothing parameter methods;  

2. given the overall smoothing parameter, update the logarithms of the relative smoothing 

parameters simultaneously using Newton’s method.  

Therefore, with this method, the smoothing parameters for each smooth term in the model 

are chosen simultaneously and automatically as part of model fitting by minimizing the GCV 

score of the whole model.  

So far, the approach for estimating an AM with the automatic model selection developed by 

Wood (2000) has been described for the simple case of one dimensional basis functions. Wood 

and Augustin (2002) and Wood (2003) have extended this approach to the cases of multi-

dimensional bases, in particular to the thin plate regression splines and to the tensor products. 

Specifically, Wood (2006) recommends to use thin-plate regression splines for smooth 

interactions of quantities measured in the same units, while he suggests to use tensor products 

for smooth interactions of quantities measured in different units, or when very different degrees 

of smoothing are appropriate relative to different covariates.  

%LEOLRJUDSK\�

Azariadis C, Drazen A. 1990. Threshold externalities in economic development. 4XDWHUO\�



 27 

-RXUQDO�RI�(FRQRPLFV ���: 501-526. 

Basile R., 2007a, Intra-distribution dynamics of regional per-capita income in Europe: evidence 

from alternative conditional density estimators, ISAE wp n. 75.  

Basile R., 2007b, Regional Economic Growth in Europe: a Semiparametric Spatial Dependence 

Approach, mimeo. 

Bandyopadhyay S., 2003, Polarisation, Stratification and Convergence Clubs: Some Dynamics 

and Explanations of Unequal Economic Growth across Indian states, mimeo. 

Banerjee, A. and E. Duflo (2003), ‘Inequality and growth: what can the data say?’, -RXUQDO�RI�

(FRQRPLF�*URZWK, 8(3), 267-300. 

Stefano Magrini & Paul Cheshire, 2006. "European Urban Growth: now for some problems of 

spaceless and weightless econometrics," Working Papers 23_06, University of Venice "Ca' 

Foscari", Department of Economics  

Dowrick, S. and N. Gemmell, (1991), “Industrialisation, Cathing up and Economic Growth: A 

Comparative Study Across theWorld’s Capitalist Economies”, The Economic Journal, 101.  

Durlauf SN, Johnson PA, Temple JRW. 2005. Growth Econometrics. In +DQGERRN�RI�(FRQRPLF�

*URZWK, Volume 1A, Aghion P, Durlauf SN (eds). North-Holland: Amsterdam. 

Efron B. and R. Tibshirani (1993), An introduction to the bootstrap. London: Chapman and 

Hall.  

Ertur C. and Koch W., "Growth, Technological Interdependence and Spatial Externalities: 

Theory and Evidence", -RXUQDO�RI�$SSOLHG�(FRQRPHWULFV, forthcoming.�

Fan J, Yao Q, Tong H. 1996. Estimation of conditional densities and sensitivity measures in 

nonlinear dynamical systems. %LRPHWULND���: 189–206.  

Fiaschi D. and Lavezzi M. (2007), Productivity Polarization and Sectoral Dynamics in 

European Regions, mimeo. 

Fotheringham, A.S., Brunsdon, C. and Charlton M. (2000), Quantitative Geography: 

Perspectives on Spatial Data, Sage Publications Ltd. 

Galor O. 1996. Convergence? Inferences from theoretical models. (FRQRPLF�-RXUQDO ���: 1056-

1069 

Getis. A, Ord, J. K. 1992 The analysis of spatial association by use of distance statistics, 

*HRJUDSKLFDO�$QDO\VLV, 24, 195-. 

Getis, A. and Ord, J. K. 1996 Local spatial statistics: an overview. In P. Longley and M. Batty 

(eds.) 6SDWLDO� DQDO\VLV�� PRGHOOLQJ� LQ� D� *,6� HQYLURQPHQW (Cambridge: Geoinformation 

International), 261–277.  

Hall P, Wolff R, Yao Q. 1999. Methods for estimating a conditional distribution function. 

-RXUQDO�RI�$PHULFDQ�6WDWLVWLFDO�$VVRFLDWLRQ ��: 154–163.  



 28 

Hastie, T.J. and Tibshirani, R.J. (1990), *HQHUDOL]HG�$GGLWLYH�0RGHOV, New York: Chapman and 

Hall 

Hyndman RJ. 1996. Computing and Graphing Highest Density Regions. 7KH� $PHULFDQ�

6WDWLVWLFLDQ ��: 120-126.  

Hyndman RJ, Bashtannyk DM, Grunwald GK. 1996. Estimating and visualizing conditional 

densities. -RXUQDO�RI�&RPSXWDWLRQDO�DQG�*UDSKLFDO�6WDWLVWLFV �� 315-336.  

Hyndman RJ, Yao Q. 2002. Nonparametric estimation and symmetry tests for conditional 

density functions. -RXUQDO�RI�1RQSDUDPHWULF�6WDWLVWLFV ��: 259-278 

Lamo A. 2000. On Convergence Empirics: Some Evidence for Spanish Regions. 

,QYHVWLJDFLRQHV�(FRQRPLFDV ��: 681-707.  

Leonida, L., 2003, On The Effects of Industrialization on Growth and Convergence Dynamics 

in Italy (1960-95), mimeo. 

Liu, Z. and T. Stengos (1999), ‘Non-Linearities in Cross-Country Growth Regressions: a 

Semiparametric Approach’, -RXUQDO�RI�$SSOLHG�(FRQRPHWULFV, 14, 527-538. 

Loader CR. 1996. Local likelihood density estimation. 7KH�$QQDOV�RI�6WDWLVWLFV ��: 1602–1618.  

Lòpez-Bazo, E., E.Vayà and M. Artìs (2004), ‘Regional externalities and growth: evidence from 

European regions’, -RXUQDO�RI�5HJLRQDO�6FLHQFH, 44(1), 43-73. 

Magrini S. 2004. Regional (Di)Convergence. In +DQGERRN�RI�5HJLRQDO�DQG�8UEDQ�(FRQRPLFV� 

Henderson V, Thisse JF (eds.). North-Holland: Amsterdam.  

Ord, J. K. and Getis, A. 1995 Local spatial autocorrelation statistics: distributional issues and an 

application. *HRJUDSKLFDO�$QDO\VLV, 27, 286–306.  

Paci, R., (1997), “More similar and less equal. Economic growth in the European regions”, 

Weltwirtschaftliches Archiv, 4.  

Paci, R. and F. Pigliaru (1999), ‘European Regional Growth: Do Sectors Matter?’ in Adams, J. 

and F. Pigliaru (ed.), (FRQRPLF� *URZWK� DQG� &KDQJH�� 1DWLRQDO� DQG� 5HJLRQDO� 3DWWHUQV� RI�

&RQYHUJHQFH�DQG�'LYHUJHQFH, Cheltenham, UK: Edward Elgar. 

Pittau MG, Zelli R. 2006. Income dynamics across EU regions: empirical evidence from kernel 

estimator. -RXUQDO�RI�$SSOLHG�(FRQRPHWULFV���: 605-628�  

Quah D. 1993. Galton’s fallacy and tests of the convergence hypothesis. 6FDQGLQDYLDQ�-RXUQDO�

RI�(FRQRPLFV ��: 427–443.  

Quah D. 1996a. Twin Peaks: Growth and Convergence in Models of Distribution Dynamics. 

(FRQRPLF�-RXUQDO ���: 1045-55.  

Quah D. 1996b. Empirics for economic growth and convergence. (XURSHDQ�(FRQRPLF�5HYLHZ 

��: 1353–1375.  

Quah D. 1996c. Convergence Emprics Across Economies with (Some) capital Mobility. 



 29 

-RXUQDO�RI�(FRQRPLF�*URZWK��: 95-124.  

Quah D. 1997. Empirics for growth and distribution: stratification, polarization, and 

convergence clubs. -RXUQDO�RI�(FRQRPLF�*URZWK �� 27-59.  

Quah D. 2006. Growth and distribution. 0LPHR�/6(�(FRQRPF�GHSDUWPHQW August.  

Unwin, A. and Unwin, D. (1998) Spatial Data Analysis with Local Statistic Journal of the Royal 

Statistical Society: Series D (The Statistician) 47 (3). 

Johnson PA., 2004. $�FRQWLQXRXV�VWDWH�VSDFH�DSSURDFK�WR�³FRQYHUJHQFH�E\�SDUWV´� Department 

of Economics, Vassar College, Poughkeepsie, NY. 

Wood, S.N. (2003) Thin plate regression splines. J.R.Statist.Soc.B 65(1):95-114. 

Wood, S.N. (2006), *HQHUDOL]HG� $GGLWLYH� 0RGHOV�� $Q� ,QWURGXFWLRQ� ZLWK� 5, Boca Ratom: 

Chapman & Hall/CRC.  



 30 

7DEOH���±�5HVXOWV�RI�DGGLWLYH�PRGHOV�

�

NPO QSRUTWVXTYQSZ\[^]`_a_cbedfRUZgbhRiVj]`[ k _aRmlhlhO nUO RUQWbe[oepWq r TYs tSRm[vu w beRm[vbohpSq r Tas tfRm[eu RUx ZSx lexzy{R r O TaQfnUR |~} k ��kX�
�

ln [  -0.987 
(0.000) 

  45.1 -1,425 0.0201 

ln �V
Q J

 
 + + δ 

 

0.311 
(0.045) 

     

       �
( )1 lnV [   12.6 

(0.000) 
3.9 54.7 -1,443 0.0183 

 

2 ln �VV
Q J

  
   + + δ  

 

 3.0 
(0.002) 

6.1    

       �
( )3 ln , lnV [ : [   6.7 

(0.000) 
10.2 74.7 -1,509 0.0130 

4 ln , ln
� �V V

V :
Q J Q J

    
     + + δ + + δ    

 
 2.9 

(0.000) 
11.4    

( )5V :ρ γ   3.2 
(0.002) 

4.4    

( )1ln < <  0.068 
(0.000) 

     

( )2ln < <  -0.052 
(0.019) 

     

( )3ln < <  0.078 
(0.004) 

     

FRQWLQXH�«�
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7DEOH���±�5HVXOWV�RI�DGGLWLYH�PRGHOV�

�

NPO QSRUTWVXTYQSZ\[^]`_a_cbedSRUZ�bhRiVj]`[ k _aRmlhleO nmO RUQSbh[oepWq r Tas tfRm[eu w bhRm[vbohpSq r TYs tfRm[eu RUx Zfx lex�y{R r O TYQfnUR |~} k ��kP�
�

( )6 ln , lnV [ : [   13.7 
(0.000) 

2.6 67.8 -1,485 0.0146 

7 ln , ln
� �V V

V :
Q J Q J

    
     + + δ + + δ    

 
 2.3 

(0.001) 
12.1    

( )8V :ρ γ   5.8 
(0.000) 

4.7    

       �
( )9 lnV [   14.5 

(0.000) 
5.8 62.8 -1,471 0.0157 

10 ln �VV
Q J

  
   + + δ  

 

 3.9 
(0.000) 

5.0    

( )1ln < <  0.072 
(0.000) 

     

( )2ln < <  -0.087 
(0.000) 

     

( )3ln < <  0.086 
(0.001) 

     

 

Notes:  

• � _cZfRUs � : Linear Solow model; � _aZfRUs � . Nonlinear Solow model; � _aZSRUs � : Spatial nonlinear Solow model 

augmented with sectoral specialization; � _aZfRUs � : Spatial nonlinear Solow model; � _aZfRms�� . Nonlinear Solow 

model augmented with sectoral specialization. 

• 
k _aRmlhlhO nUO RUQWbe[

refer to parametric terms. 

• w beRm[vbh[  are used to investigate the overall (‘approximate’) significance of smooth terms. 

• � x ZSx lvx  (effective degrees of freedom) reflect the flexibility of the model. An e.d.f. equals to 1 suggests that the 

smooth term can be approximated by a linear term. 

• 
y{R r O TYQSnUR

 is the proportion of deviance explained. 

• 
|~} k

 is the (‘approximate’) Akaike Information Criterion. 

• The 
��kX� [�nm_YVmR

 (x 1000) provides a criterion for choosing the model specification among several different 

possible alternatives. Thus, the decision to remove or maintain a term is based on comparison of GCV scores 

and the model which minimizes the GCV is preferred.  
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7DEOH�����'LDJQRVWLFV�RI�UHVLGXDOV�

 
� _aZfRUs � � _cZfRUs � � _aZSRUs � � _aZSRUs � � _aZfRmsW��{_aVm]�Tas O b �

JB 22.860 
(0.000) 

31.674 
(0.000) 

1.196 
(0.549) 

2.407 
(0.300) 

22.129 
(0.000) �Wp TabeO TYsZSR p RUQSZfx MC-I 400 km: 0.001 

900 km: 0.002 
400 km: 0.001 
900 km: 0.004 

400 km: 0.118 
900 km: 0.361 

400 km: 0.593 
900 km: 0.607 

400 km: 0.002 
900 km: 0.024 

GC-R 400 km: 0.002 
900 km: 0.000 

400 km: 0.001 
900 km: 0.000 

400 km: 0.108 
900 km: 0.333 

400 km: 0.570 
900 km: 0.641 

400 km: 0.002 
900 km: 0.017 k _cQf[�bvTaQSbr TYVmO TYQSnmR F test 

(p-values) 
3.636 

(0.000) 
0.317 

(0.574) 
1.222 

(0.289) 
1.935 

(0.058) 
1.366 

(0.207) 
 

Notes:  

• � _cZfRUs � : Linear Solow model; � _aZfRUs � . Nonlinear Solow model; � _aZSRUs � : Spatial nonlinear Solow model 

augmented with sectoral specialization; � _aZfRUs � : Spatial nonlinear Solow model; � _aZfRms�� . Nonlinear Solow 

model augmented with sectoral specialization. 

• The 
Qf_YVm]`TYs O b �gbhRm[vb

 is based on Jarque-Bera (JB) statistics (p-value in parenthesis). 

• The tests of 
[ p TcbvO TYsfZSR p RUQSZfRUQSnUR

 (using two different distance neighbors weights matrices) are based on a Monte 

Carlo Simulation of Moran’s I (MC-I) and on Geary C test under randomization (C-R) (p-values). 

• The 
beRm[vb�_cl�nU_aQf[�bhTYQSb r TaVmO TYQWnUR

 of the residuals is based on the estimation of the simple model 

( )ˆ ˆH V \= α + + ε , where Ĥ  is the absolute value of the residuals of the model and \̂  is the vector of 

fitted values. Under the null hypothesis of constant variance, the smooth term ( )ˆV \  must be estimated with 

one degree of freedom and, according to a F test, should not have a significant effect on Ĥ .  



 33 

)LJXUH���±�8QLYDULDWH�GHQVLW\�

/RFDO�OLNHOLKRRG�GHQVLW\�HVWLPDWLRQ�ZLWK�YDULDEOH�EDQGZLGWK��/RDGHU��������

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
5

1.
0

1.
5

de
ns

ity

1980
2002

 



 34 

)LJXUH���±�&KRURSOHWK�PDSV�RI�WKH�GLVWULEXWLRQ�RI�ODERXU�SURGXFWLYLW\�LQ������DQG������

 
Note: regional productivity levels have been classified using 100 break-points. The intensity of the grey 
color varies with the variable of interest. 
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)LJXUH���±�0DSV�RI�*�LQGLFHV�
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)LJXUH�����,QWUD�'LVWULEXWLRQ�'\QDPLFV�
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)LJXUH���±�*URZWK�GHWHUPLQDQWV��PRGHO����HT�����
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