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Abstract 
 

This paper explores the role that inflation forecasts play in the uncertainty surrounding the estimated effects of 
alternative monetary rules on unemployment dynamics in the euro area and the US. We use the inflation forecasts 
of 8 competing models in a standard Bayesian VAR to analyse the size and the timing of these effects, as well as 
to quantify the uncertainty relative to the different inflation models under two rules. The results suggest that 
model uncertainty can be a serious issue and strengthen the case for a policy strategy that takes into account 
several sources of information. We find that combining inflation forecasts from many models not only yields 
more accurate forecasts than those of any specific model, but also reduces the uncertainty associated with the real 
effects of policy decisions. These results are in line with the model-combination approach that central banks 
already follow when conceiving their strategy. 

 
 
 
Keywords: Inflation Forecasts, Unemployment, Model Uncertainty 
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Non-Technical Summary 
 
The paper aims at investigating the role that inflation forecasts play in the uncertainty 

surrounding the estimated effects of alternative monetary rules on unemployment dynamics in 
the euro area and the US. In particular, we (i) explore the out-of-sample forecast performance 
of a set of linear and non-linear competing models of inflation rate determination over 
horizons from 1 to 8 quarters; (ii) evaluate the effect of the policy rate on unemployment in a 
Bayesian VAR, where the inflation forecast is one of the endogenous variables, and parameter 
uncertainty is accounted for; (iii) employ standard simulation analysis to quantify the model 
uncertainty surrounding the estimated effect on unemployment of a shock to the interest rate 
under two different policy rules.  

The formulation of a typical Taylor rule assumes that the central bank reacts to some 
measure of inflation expectation. In our structural specification, the Taylor rule is “forward-
looking”, in the sense that the central bank reacts to inflation forecasts, where the latter are 
obtained using several competing models. Model uncertainty plays a dual role here: on the 
one hand it reflects the choice of the competing models to forecast inflation; and on the other, 
we specify two alternative rules, with the central bank reacting either to inflation forecasts 
and unemployment, or just to inflation.  

The main questions we ask in the paper then are: Can we quantify model uncertainty on 
the estimated effects of a monetary policy shock? Does a forecast combination reduce this 
uncertainty? We show that imposing appropriate weights on competing models of inflation 
forecasts – reflecting the relative ability each model has over different sub-sample periods – 
substantially increases forecast accuracy. Moreover, with the help of standard VAR 
techniques, we show that, although the estimated effect of a monetary shock on 
unemployment significantly varies across inflation forecasts, countries, horizons and sub-
samples, the combination of inflation forecasts from many models consistently dampens the 
uncertainty associated with the estimated effects of policy decisions. In this respect, our 
conclusions are in line with the literature that deals with the problems related to the 
information set that should be used when identifying the effect of monetary policy 
innovations on the economy. They can be seen, for instance, as confirming the results of 
Bernanke at al. (2005), who show that a factor-augmented VAR (FAVAR) methodology 
significantly improves the correct measurement of the effect of monetary policy on the 
economy by extending the information contained in a standard VAR with a “summary” of 
other shocks affecting the economy not accounted for by the variables in the VAR. Our 
results also support the model-combination approach that central banks follow when 
conceiving their strategy. 
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1. Introduction 
 

In this paper we investigate the role that inflation forecasts play in the uncertainty surrounding the estimated 

effects of alternative monetary rules on unemployment dynamics in the euro area and the US. A significant 

fraction of this uncertainty is related to the possibility of correctly predicting the time path of inflation and 

therefore the price level. Then, producing comparative evidence on the relative ability of alternative models to 

forecast inflation is not only helpful in terms of improving the ability of monetary authorities to set interest rates, 

but also helps to understand the effects of monetary policy on unemployment for each alternative set of forecasts.  

Our paper explicitly deals with these issues. In particular, we (i) explore the out-of-sample forecast 

performance of a set of linear and non-linear competing models of inflation rate determination over horizons 

from 1 to 8 quarters; (ii) evaluate the effect of the policy rate on unemployment in a Bayesian VAR, where the 

inflation forecast is one of the endogenous variables, and parameter uncertainty is accounted for; (iii) employ 

standard simulation analysis to quantify the model uncertainty surrounding the estimated effect on unemployment 

of a shock to the interest rate under two different policy rules.  

The formulation of a typical Taylor rule assumes that the central bank reacts to some measure of inflation 

expectation. In our structural specification, the Taylor rule is “forward-looking”, in the sense that the central bank 

reacts to inflation forecasts, where the latter are obtained using several competing models. Model uncertainty 

plays a dual role here: on the one hand it reflects the choice of the competing models to forecast inflation; and on 

the other, we specify two alternative rules, with the central bank reacting either to inflation forecasts and 

unemployment, or just to inflation.  

The main questions we ask in the paper then are: Can we quantify model uncertainty on the real effects of a 

monetary policy shock? Which kind of estimated effect is associated with the best inflation forecast? And finally, 

does a forecast combination reduce this uncertainty? The contribution of our paper with respect to the existing 

literature is twofold. First, we show that imposing appropriate weights on competing models of inflation forecasts 

– reflecting the relative ability each model has over different sub-sample periods – substantially increases forecast 

accuracy. Second, with the help of standard VAR techniques we show that, although the estimated effect of a 

monetary shock on unemployment significantly varies across inflation forecasts, countries, horizons and sub-

samples, the combination of inflation forecasts from many models consistently dampens the uncertainty 

associated with the real effects of policy decisions. In this respect, our conclusions are in line with the literature 

that deals with the problems related to the information set that should be used when identifying the effect of 

monetary policy innovations on the economy. They can be seen, for instance, as confirming the results of 

Bernanke at al. (2005), who show that a factor-augmented VAR (FAVAR) methodology significantly improves 

the correct measurement of the effect of monetary policy on the economy by extending the information 
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contained in a standard VAR with a “summary” of other shocks affecting the economy not accounted for by the 

variables in the VAR. Our results are also in line with the model-combination approach that central banks follow 

when conceiving their strategy. 

The remainder of the paper is structured as follows. Section 2 analyses the forecasting properties over 

different horizons of eight competing models by employing alternative econometric techniques. Section 3 

examines the role of heterogeneous inflation forecasts on the estimated effects of monetary policy on 

unemployment, under different monetary policy rules. Section 4 presents empirical measures of model uncertainty 

based on the results obtained in the simulation analysis. Finally, section 5 summarises the paper’s main findings. 

 

2. Forecasting Inflation 

A significant fraction of the uncertainty a central bank faces in defining its strategy is related to the possibility 

of correctly predicting inflation. In fact, in selecting the current level of interest rates central banks usually take 

into account expected inflation, which may change according to the model used. This has consequences for the 

types of monetary policy to be implemented. Producing comparative evidence on the relative ability of alternative 

models in forecasting inflation might improve the ability of monetary authorities to set interest rates. Moreover, 

each alternative set of forecasts could lead to different reactions of the real economy to monetary policy actions. 

The empirical analysis presented in this section analyses the forecasting properties over horizons from one 

quarter to eight quarters of eight competing models: a driftless random walk process (RW); a univariate  

autoregressive moving-average model (ARMA); a spectral model (SP); a four-variable vector autoregressive model 

(VAR); an exponential smooth transition autoregressive model (ESTAR), a univariate markov-switching 

autoregressive model (MS-AR); a markov-switching VAR (MS-VAR); and a combination of all the previous 

methods (COM(1-7)). (For a detailed description of the models see the appendix.) 

The idea behind the combination of forecasting techniques is that no forecasting method is fully appropriate 

for all situations. The combination accounts for the time-varying forecasting ability of alternative models in that a 

single forecasting model might only be optimal conditional on given realizations, information set, model 

specification or sample period. By combining methods, we can compensate for the weakness of each forecasting 

model under particular conditions. While there is broad consensus that appropriate combinations of individual 

forecasts often improve forecast accuracy (see for example Stock and Watson (2004, 2005) and Timmermann 

(2006)), the literature has not yet converged to a particular set of forecast weights to be implemented when 

constructing combined time series. In the present study we compute a combined forecast adapting the 

methodology proposed in Hong and Lee (2003), Yang (2004) and Yang and Zou (2004). One of the advantages 
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of their method is that it ensures that the weight attributed to a certain model at time t is larger the greater its 

ability to forecast the actual inflation rate in period t-1. 

Figure 1 plots the weights used in computing the combined forecast series. Visual inspection provides useful 

information concerning the time-varying forecasting ability of competing models. In cases where the weights 

attributed to each model are very similar, as in the central part of the sample period for the one-quarter-ahead 

forecast, the relative accuracy of the forecasts produced by each model might not be affected by a particular sub-

sample period selected by the evaluation strategy. Moreover, the performance is relatively homogenous across 

methods. Alternatively, when weights are very dissimilar, the correct choice of the forecasting model might 

produce a significant improvement in terms of predictive accuracy. The figure also suggests that there is a positive 

relationship between the volatility of the selected weights, i.e. the number of time periods each model account for 

the same proportion in the combined series, and the forecasting horizon. 

Figure 1. Weights used in the forecast combination 
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Comparing Out-of-sample Forecasts 

The eight models identified above (seven models plus the combination) are used to compute out-of-sample 

forecasts of the US and the euro area inflation rates. We use quarterly data from 1970:1 to 2005:3. For the 

evaluation, the models are recursively estimated on a sub-sample of the historical data. Specifically, to generate the 

h-step ahead inflation forecast at time t = 1,…,T,…,T+h, we estimate using all historical data up to T.1 Then we 

compute the corresponding combined forecast series. Finally, the out-of sample forecast of the competing models 

for alternative periods are evaluated. The forecast accuracy is measured by computing recursive forecasts. The 

estimation period goes from 1970:1 to 1989:4, while the forecast period goes from 1990:1 to 2005:3. This means 

that the first sequence of one- to eight-quarter-ahead forecasts is generated starting from 1990:1. Then, the 

starting date of the forecast period is rolled forward one period, and another sequence of forecasts is generated. 

This loop is repeated until we have 62×one-quarter forecasts, down to 54×eight-quarter forecasts, so that the 

comparable sample across forecast horizons starts in 1992:1. 

Figure 2. Out-of-sample Point Forecasts of competing models 
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1 We also adopt an alternative methodology based on rolling, rather than recursive, estimates so that the sample size remains 
constant. More precisely, for each prediction period, we use a rolling sample of size T=40 to estimate the model parameters. 
The results remain substantially unchanged. The disadvantage of this procedure, however, is that the estimates are sensitive 
to the size of the selected rolling window. 
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Figure 2 provides a graphical summary of the performances of the competing models over the entire sample 

periods in forecasting the two inflation rates.  

The charts report the actual inflation rates (solid line) and the eight forecasting models (dashed lines) at the 

one-, four- and eight-quarter-ahead horizons. Visual inspection seems to suggest, as expected, that short-horizon 

inflation rate forecasts perform better. The figure also illustrates higher long-horizon forecast volatility. This 

means that the gains (but also the losses) we can achieve by using a particular model are larger the longer the 

horizon is. To assess the performance of the alternative models, we analyse the forecast accuracy through a set of 

statistical measures. 

Table 1 reports the Root Mean Square Error (RMSE) and the relative ranking in terms of forecast errors for 

the 96 cases (eight models, three horizons, two sub-samples). The last column in each panel reports the average 

rank of the model. 

Table 1. Comparing Forecast Accuracy – RMSE 

 Panel A : 1 992:1 -2005:3 Panel B: 1 998:4-2005:3
Euro area Ran k U S Ran k Av g . Ran k Euro area Ran k U S Ran k Av g . Ran k

1 -quarter 1 -quarter
RW 0.29 [2] 0.41 [5] [3.5] RW 0.32 [2] 0.51 [6] [4.0]
SP 0.31 [3] 0.33 [2] [2.5] SP 0.37 [5] 0.40 [3] [4.0]
ESTA R 0.35 [6] 0.46 [7] [6.5] ESTAR 0.45 [8] 0.59 [8] [8.0]
A RM A (1,1) 0.32 [4] 0.43 [6] [5.0] A RM A (1,1) 0.35 [3] 0.54 [7] [5.0]
M S(2)-AR(4) 0.37 [8] 0.40 [4] [6.0] MS(2)-A R(4) 0.43 [7] 0.48 [5] [6.0]
VA R(4) 0.34 [5] 0.37 [3] [4.0] VAR(4) 0.38 [6] 0.39 [1] [3.5]
M S(2)-VA R(4) 0.37 [7] 0.48 [8] [7.5] MS(2)-VA R(4) 0.36 [4] 0.45 [4] [4.0]
C O M(1-7) 0.28 [1] 0.33 [1] [1.0] C OM (1-7) 0.32 [1] 0.40 [2] [1.5]
4-quarter 4-quarter
RW 0.55 [3] 0.89 [2] [2.5] RW 0.54 [2] 1.06 [3] [2.5]
SP 0.68 [5] 1.04 [5] [5.0] SP 0.73 [6] 1.17 [8] [7.0]
ESTA R 0.58 [4] 0.90 [3] [3.5] ESTAR 0.65 [4] 1.03 [2] [3.0]
A RM A (1,1) 0.54 [2] 0.92 [4] [3.0] A RM A (1,1) 0.55 [3] 1.11 [6] [4.5]
M S(2)-AR(4) 0.90 [8] 1.16 [6] [7.0] MS(2)-A R(4) 1.07 [8] 1.17 [7] [7.5]
VA R(4) 0.89 [7] 1.25 [7] [7.0] VAR(4) 0.65 [5] 1.11 [5] [5.0]
M S(2)-VA R(4) 0.88 [6] 1.54 [8] [7.0] MS(2)-VA R(4) 0.87 [7] 1.09 [4] [5.5]
C O M(1-7) 0.54 [1] 0.81 [1] [1.0] C OM (1-7) 0.47 [1] 0.90 [1] [1.0]
8-quarter 8-quarter
RW 0.83 [4] 1.22 [5] [4.5] RW 0.77 [2] 1.27 [4] [3.0]
SP 0.86 [5] 1.13 [2] [3.5] SP 0.86 [4] 1.16 [2] [3.0]
ESTA R 0.82 [3] 1.14 [3] [3.0] ESTAR 0.92 [5] 1.24 [3] [4.0]
A RM A (1,1) 0.74 [2] 1.35 [7] [4.5] A RM A (1,1) 0.78 [3] 1.32 [5] [4.0]
M S(2)-AR(4) 1.43 [7] 2.28 [6] [6.5] MS(2)-A R(4) 1.72 [7] 1.94 [8] [7.5]
VA R(4) 1.28 [6] 1.64 [8] [7.0] VAR(4) 1.37 [6] 1.46 [6] [6.0]
M S(2)-VA R(4) 1.55 [8] 2.21 [4] [6.0] MS(2)-VA R(4) 1.86 [8] 1.59 [7] [7.5]
C O M(1-7) 0.65 [1] 0.92 [1] [1.0] C OM (1-7) 0.58 [1] 0.78 [1] [1.0]  

 

When considering the whole forecasting sample (Table 1, panel A) the results indicate that different models 

are able to beat the random walk at different time horizons. More precisely, while at the one-step-ahead horizon 

the best performing model is the COM(1,7) followed by the SP, at four- and eight-quarter-ahead horizon, also 

ESTAR and ARMA(1,1) produce more accurate forecasts than the RW. This evidence also emerges when 
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analysing the second sub-sample (Table 1, panel B), which ranges from 1998:4 to 2005:3 and embraces the launch 

of the Euro. In general, it is clear that combining models produce a better forecast accuracy than single 

forecasting model for this sub-sample too. This is true also if we use a naïve weighting scheme that attaches a 

constant weight (1/n, where n is the number of selected models) to each model at each time period. Table 2 

reports the ratio of the RMSE of our scheme (numerator) over the naïve one (denominator). 

 
Table 2. Comparing two weighting schemes – Ratio of RMSE   

 
 
Note, in particular, that the performance of our scheme seems to increase with the forecast horizon. More 

precisely, the percent improvement is 3% at 4-quarter-ahead and more than 20% at 8-quarter-ahead, on average.  

The RMSE provides a quantitative estimate of the forecasting ability of a specific model, allowing different 

models to be ranked, but it does not provide a formal statistical indication of whether one model is significantly 

better than another. We also explicitly test the null hypothesis of no difference in the accuracy of the two 

competing forecasts by using forecast encompassing tests. In particular, we use the modified version of the 

Diebold-Mariano (1995) (MDM) proposed by Harvey et al. (1997), which adjusts for the possible wrong size of 

the original test when the forecasting horizon increases.  

Table 3 reports the statistics of equal forecast accuracy (as measured by MSE) and the associated probabilities 

under the null (of equal accuracy). These tests refer to the whole forecasting sample (1992:1-2005:3). We follow 

the suggestion of Harvey et al. (1997) in comparing the statistics with critical values from the t-Student 

distribution with (T-1) degrees of freedom, rather than from the standard normal distribution. P-values not 

greater than 0.05 suggest that Model i produces a lower forecast error (in terms of root mean squared error) 

relative to the Model j at 5% significance level. On the contrary, p-values not smaller then 0.95 mean that Model i 

generates a higher forecast error at the 5% level.  

In absolute terms, if we consider the number of times each model significantly beats its competitors, the two 

test statistics reveal similar results at different forecasting horizons. Precisely, at one- four- and eight-quarter 

horizons, combined forecasts are found to be the best performing models. Of a total of 42 cases (seven 

step-
ahead 1992:1 - 2005:3 1998:4 - 2005:3 Percent 

Improvement

1 1.14 1.13 -14%
4 1 0.94 3%
8 0.85 0.77 19%

1 1.02 1.02 -2%
4 0.95 0.99 3%
8 0.76 0.76 24%

Euro area

US
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competitors and two inflation rates for each of the three horizons), the percentage of times they beat the other 

model is higher than 75%. This evidence is in line with the results obtained with the RMSE in Table 1. 

Table 3. MDM: Model i vs. Model j 

Model i Model j Test Stat. p-value Test Stat. p-value Test Stat. p-value Test Stat. p-value Test Stat. p-value Test Stat. p-value
RW SP -0.75 0.23 2.06 0.98 -1.73 0.04 -1.60 0.05 -0.56 0.29 1.20 0.88

ESTAR -1.80 0.04 -1.57 0.06 -0.64 0.26 -0.20 0.42 -0.09 0.47 0.73 0.77
ARMA(1,1) -1.89 0.03 -1.48 0.07 0.32 0.62 -0.68 0.25 1.09 0.86 -1.04 0.15
MS(2)-AR(4) -1.90 0.03 1.03 0.85 -2.66 0.00 -3.02 0.00 -2.75 0.00 -7.13 0.00
VAR(4) -1.69 0.05 1.50 0.93 -2.10 0.02 -3.68 0.00 -3.84 0.00 -3.29 0.00
MS(2)-VAR(4) -2.12 0.02 -0.37 0.36 -4.43 0.00 -3.75 0.00 -3.99 0.00 -4.49 0.00
COM(1,7) 0.45 0.67 2.45 0.99 0.33 0.63 1.98 0.98 3.20 1.00 5.22 1.00

SP RW 0.75 0.77 -2.06 0.02 1.73 0.96 1.60 0.95 0.56 0.71 -1.20 0.12
ESTAR -1.54 0.06 -2.07 0.02 1.28 0.90 1.03 0.85 0.46 0.68 -0.18 0.43
ARMA(1,1) -0.66 0.25 -2.17 0.01 1.67 0.95 1.19 0.88 1.23 0.89 -1.34 0.09
MS(2)-AR(4) -1.35 0.09 -2.68 0.00 -1.59 0.06 -1.08 0.14 -2.58 0.01 -6.60 0.00
VAR(4) -0.93 0.18 -1.52 0.06 -1.28 0.10 -1.69 0.05 -3.23 0.00 -3.52 0.00
MS(2)-VAR(4) -1.62 0.05 -2.97 0.00 -2.25 0.01 -2.72 0.00 -3.56 0.00 -4.79 0.00
COM(1,7) 1.52 0.94 -0.92 0.18 2.08 0.98 2.53 0.99 2.33 0.99 2.50 0.99

ESTAR RW 1.80 0.96 1.57 0.94 0.64 0.74 0.20 0.58 0.09 0.53 -0.73 0.23
SP 1.54 0.94 2.07 0.98 -1.28 0.10 -1.03 0.15 -0.46 0.32 0.18 0.57
ARMA(1,1) 1.51 0.93 1.05 0.85 0.86 0.81 -0.32 0.37 1.21 0.89 -1.36 0.09
MS(2)-AR(4) 0.33 0.63 1.48 0.93 -2.41 0.01 -1.87 0.03 -2.67 0.00 -6.25 0.00
VAR(4) 0.87 0.81 1.69 0.95 -1.99 0.02 -3.13 0.00 -3.48 0.00 -3.31 0.00
MS(2)-VAR(4) 0.36 0.64 0.54 0.71 -3.45 0.00 -3.32 0.00 -3.90 0.00 -4.33 0.00
COM(1,7) 2.09 0.98 2.25 0.99 0.65 0.74 1.32 0.91 2.32 0.99 2.15 0.98

ARMA(1,1) RW 1.89 0.97 1.48 0.93 -0.32 0.38 0.68 0.75 -1.09 0.14 1.04 0.85
SP 0.66 0.75 2.17 0.99 -1.67 0.05 -1.19 0.12 -1.23 0.11 1.34 0.91
ESTAR -1.51 0.07 -1.05 0.15 -0.86 0.19 0.32 0.63 -1.21 0.11 1.36 0.91
MS(2)-AR(4) -0.72 0.23 1.36 0.91 -2.60 0.00 -2.00 0.02 -2.90 0.00 -5.61 0.00
VAR(4) -0.18 0.43 1.72 0.96 -2.28 0.01 -2.93 0.00 -3.96 0.00 -1.60 0.05
MS(2)-VAR(4) -0.82 0.20 0.18 0.57 -4.32 0.00 -3.35 0.00 -4.20 0.00 -4.15 0.00
COM(1,7) 2.11 0.98 2.48 0.99 0.05 0.52 2.39 0.99 1.17 0.88 3.17 1.00

MS(2)-AR(4) RW 1.90 0.97 -1.03 0.15 2.66 1.00 3.02 1.00 2.75 1.00 7.13 1.00
SP 1.35 0.91 2.68 1.00 1.59 0.94 1.08 0.86 2.58 1.00 6.60 1.00
ESTAR -0.33 0.37 -1.48 0.07 2.41 0.99 1.87 0.97 2.67 1.00 6.25 1.00
ARMA(1,1) 0.72 0.77 -1.36 0.09 2.60 1.00 2.00 0.98 2.90 1.00 5.61 1.00
VAR(4) 0.89 0.81 0.88 0.81 0.04 0.52 -0.85 0.20 0.83 0.80 4.70 1.00
MS(2)-VAR(4) 0.03 0.51 -1.70 0.04 0.20 0.58 -2.52 0.01 -0.71 0.24 0.37 0.64
COM(1,7) 2.50 0.99 1.44 0.93 2.81 1.00 4.01 1.00 3.48 1.00 9.16 1.00

VAR(4) RW 1.69 0.95 -1.50 0.07 2.10 0.98 3.68 1.00 3.84 1.00 3.29 1.00
SP 0.93 0.82 1.52 0.94 1.28 0.90 1.69 0.95 3.23 1.00 3.52 1.00
ESTAR -0.87 0.19 -1.69 0.05 1.99 0.98 3.13 1.00 3.48 1.00 3.31 1.00
ARMA(1,1) 0.18 0.57 -1.72 0.04 2.28 0.99 2.93 1.00 3.96 1.00 1.60 0.95
MS(2)-AR(4) -0.89 0.19 -0.88 0.19 -0.04 0.48 0.85 0.80 -0.83 0.20 -4.70 0.00
MS(2)-VAR(4) -0.91 0.18 -2.38 0.01 0.10 0.54 -2.06 0.02 -1.94 0.03 -2.92 0.00
COM(1,7) 2.75 1.00 0.73 0.77 2.46 0.99 4.58 1.00 5.78 1.00 5.06 1.00

MS(2)-VAR(4) RW 2.12 0.98 0.37 0.64 4.43 1.00 3.75 1.00 3.99 1.00 4.49 1.00
SP 1.62 0.95 2.97 1.00 2.25 0.99 2.72 1.00 3.56 1.00 4.79 1.00
ESTAR -0.36 0.36 -0.54 0.29 3.45 1.00 3.32 1.00 3.90 1.00 4.33 1.00
ARMA(1,1) 0.82 0.80 -0.18 0.43 4.32 1.00 3.35 1.00 4.20 1.00 4.15 1.00
MS(2)-AR(4) -0.03 0.49 1.70 0.96 -0.20 0.42 2.52 0.99 0.71 0.76 -0.37 0.36
VAR(4) 0.91 0.82 2.38 0.99 -0.10 0.46 2.06 0.98 1.94 0.97 2.92 1.00
COM(1,7) 2.78 1.00 2.58 1.00 5.48 1.00 4.18 1.00 4.89 1.00 5.83 1.00

COM(1,7) RW -0.45 0.33 -2.45 0.01 -0.33 0.37 -1.98 0.02 -3.20 0.00 -5.22 0.00
SP -1.52 0.06 0.92 0.82 -2.08 0.02 -2.53 0.01 -2.33 0.01 -2.50 0.01
ESTAR -2.09 0.02 -2.25 0.01 -0.65 0.26 -1.32 0.09 -2.32 0.01 -2.15 0.02
ARMA(1,1) -2.11 0.02 -2.48 0.01 -0.05 0.48 -2.39 0.01 -1.17 0.12 -3.17 0.00
VAR(4) -2.50 0.01 -1.44 0.07 -2.81 0.00 -4.01 0.00 -3.48 0.00 -9.16 0.00
MS(2)-AR(4) -2.75 0.00 -0.73 0.23 -2.46 0.01 -4.58 0.00 -5.78 0.00 -5.06 0.00
MS(2)-VAR(4) -2.78 0.00 -2.58 0.00 -5.48 0.00 -4.18 0.00 -4.89 0.00 -5.83 0.00

1quarter-ahead 4quarter-ahead 8 quarter-ahead
Euro area US Euro area US Euro area US

 

3. Structural Inference and Policy Analysis 

From the previous findings, it is clear that different models may give rise to inflation forecasts which are 

statistically different, especially if we consider one or two-year-ahead forecasts, i.e. the typical horizon of the 
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policymaker. In this section we use the previous results to understand in which way inflation forecasts may 

influence the estimated effects of monetary policy shocks on unemployment dynamics. 

We exploit the interrelated ideas that (i) policymakers might have access to several inflation forecasts when 

taking their decisions; and (ii) they might use different policy rules. Our main purpose is therefore to analyse the 

role of heterogeneous inflation forecasts on the effects of monetary policy on real activity under different 

monetary policy rules. From the combination of the two simple features (i) and (ii), our experiment contributes to 

quantifying the effects of particular shocks under model uncertainty.  

As already argued by several scholars, the degree of uncertainty faced by policymakers can be so large that the 

effects of policy decisions on the economy are perceived at least as ambiguous (see for example Onatski and 

Williams (2003)). In order to shed some light on the level of this ambiguity, we particularly focus on the ex post 

analysis of a shock to monetary policy, using a reference model that considers three types of uncertainty: one 

related to the different ways policymakers form their expectations on future inflation; one related to the different 

rules adopted to take their decision; and one associated with the parameters of the reference model. 

 3.1 Model and Estimation 

Our reference model is a structural VAR for an open economy, where the set of endogenous variables 

comprises unemployment, interest rate, exchange rate and inflation forecasts. The main difference with a standard 

VAR is that we replace current inflation rates with one, four and eight steps-ahead inflation forecasts computed in 

the previous section. In other words, we take seriously the idea that policymakers, when taking decisions, might 

use several inflation forecasts, and use the inflation forecasts obtained from each of the eight previous models to 

check for possible differential effects that the decision on the interest rate could have on unemployment.  

Because we use inflation forecasts and not current inflation, the variables cannot be ordered as in a standard 

recursive VAR as (1) inflation, (2) unemployment rate, (3) interest rate, (4) exchange rate (see e.g. Stock and 

Watson (2001)). Our VAR, instead, is structural in the sense that we use economic theory to identify the 

contemporaneous relationships between the variables in the form of two specific non-triangular identifying 

assumptions, each reflecting a given monetary policy rule. By checking then how sensitive results are to these 

assumptions, we can quantify the estimated uncertainty relative to the policy rule. 

In our experiment we consider two related identifying assumptions on the contemporaneous variance-

covariance relationships. In the first, we use a version of the Taylor rule (TR), where the central bank sets the 

interest rate by reacting to current information on unemployment and to inflation forecasts. In this sense, our TR 

expresses a mixture of backward and forward-looking behaviour. In the second, we use a complete forward-

looking TR where only shocks to inflation expectations are relevant for the decision of the central bank. We will 
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refer to this scheme as the “Strict Inflation Rule” (SIR). These schemes can be translated algebraically as follows. 

The VAR is represented by: 

( ) t tA L Y ε=  (4) 

where the vector of endogenous variables is given by: ( )      tt t t tY u i e π ′= ; εt  is a vector of VAR innovations, 

A(L) is a polynomial matrix in the lag operator and C is a vector of constants. The innovations are related to a 

vector of VAR structural shocks with mean zero and a diagonal variance-covariance matrix through the 

relation 0t tA vε = . The two identification schemes2 above are easily summarised then in the following 

contemporaneous structures: 

21 24 24
0 0

31 32 31 32

41 42 41 42 43

1 0 0 0 1 0 0 0
1 0 0 1 0

1 0 1 0
0 1 1

TR SIRa a a
A and A

a a a a
a a a a a

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= =⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 

It should be noted that both schemes give rise to an exact identified model.  

We estimate a VAR for each monetary rule and for each inflation forecast. As said above, we also consider 

uncertainty about the parameters of the model, and assume that they are random variables. Standard Bayesian 

techniques are employed to estimate the VAR (see e.g. Sims and Zha (1999)), and produce posterior distributions 

of quantities of interest. If our degree of uncertainty is high, we can attach a diffuse prior on the parameters. This 

has the advantage that posterior densities will be centred on OLS estimates.  

Concretely, the VAR can be rewritten (e.g. Ciccarelli and Rebucci (2003)) as: 

( )t t tY I X β ε= ⊗ +  (5) 

whereεt is the vector of VAR innovations assumed to be i.i.d N(0, Σ ). It is easy to show that by combining the 

likelihood function of this model with the diffuse prior information ( )
1

2,
n

p β
+−Σ ∝ Σ , the joint 

posterior ( )1, |p Yβ −Σ  is a Normal-Wishart distribution, with: 

                                                 
2 We examine the robustness of the simulation results by adopting two alternative recursive identification schemes where the 

ordering of the variables is ( )  tt t tu i eπ ′ and ( )  tt t tu i eπ ′ , where the contemporaneously exogenous variables are ordered 

first. In these specifications, the (exogenous) exchange rate shocks are extracted by conditioning on the current value of the 
unemployment rate, the interest rate and the expected inflation. Despite some differences, the evidence emerging from this 
analysis suggests that the size and the timing of the unemployment response are similar across the identification schemes. (To 
save space, these simulations are not presented, but all results can be made available upon request). 
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( ) ( )
1

1 ˆ| ,p Y W T T k
−

− ⎡ ⎤Σ = Σ −⎢ ⎥⎢ ⎥⎣ ⎦
 (6) 

and, conditional on Σ , 

( ) ( ) 1ˆ| , , 'p Y N X Xβ β −⎡ ⎤Σ = Σ⊗⎢ ⎥⎣ ⎦  (7) 

Where β̂  and Σ̂  are the OLS estimates of β  and Σ . Therefore, inference on any functions of the 

parameters is easily conducted by first sampling Σ  and then, given this draw, by sampling β . 

Given that both identification schemes are exact, there is a one-to-one mapping between Σ  and 0A , and 

therefore it is relatively easy to recover the latter from the former. Uncertainty about Σ  will translate into 

uncertainty about 0A . 

3.2 Results 

Our simple framework can be used to analyse the two types of policies mentioned above: a surprise monetary 

intervention and a change in the policy rule. The first is summarised, for instance, in the impulse responses of the 

rate of unemployment to a monetary policy shock for each inflation forecast. The second is simply carried out by 

comparing the impulse responses in the two models and measuring the difference. We use data for the US and 

the euro area. The sample used for the analysis is 1990-2005. Results are reported in Figures 3-7 and Tables 4-7. 

 

3.2.1 A Benchmark 
As a benchmark, Figure 3 illustrates the responses of unemployment to an unexpected increase in interest 

rates, in a typical recursive four-variable BVAR, where the order of the variables is the standard one: (1) current 

inflation, (2) unemployment, (3) interest rate and (4) exchange rate, for both the US and the euro area, over two 

samples, 1970-2005 and 1990-2005. We also report a 68% confidence interval for each response.3 Interestingly, 

for both the US and the euro area, there seems to be a change in the response in the last 15 years. A surprising 

common feature, for instance, is that the effect becomes positive and significant only after four to eight quarters, 

whereas it is negative and significant for the first two to four quarters. This is true for both the US and the euro 

area in the 1990s, but only for the latter if we consider the entire sample.  

Although inconsistent with our a priori beliefs, this pattern can be justified from a theoretical point of view. 

Suppose, for example, that monetary authorities increase the nominal interest rate, leading to a negative impact on 

                                                 
3 In Appendix B we report all the impulse responses. Apart form the usual price puzzle, all other responses are in line with 
the expected benchmarks. 
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output. When a recession occurs, people in the labour force, who are not working, can react in three different 

ways. First, they can keep looking for a job in the area, thus remaining unemployed; second, they can migrate to 

another area; or third they can stop looking for a job, thereby exiting the labour force (and becoming 

“discouraged workers”). The concept of discouraged workers was first introduced by Long (1953). The 

discouraged worker hypothesis assumes that since searching for a job is a very expensive activity, a persistent 

period of unemployment reduce the probability of finding a job and may induce a group of secondary workers 

not to enter in the labour market. A large number of empirical studies covering various countries report evidence 

consistent with this hypothesis (Benati (2001); Darby et al. (2001); Blundell et al. (1998); Clark and Summers 

(1982)). Our preliminary findings appear to confirm this hypothesis, which in the US would be sample-dependent 

and only valid in the 1990s, whereas in the euro area it holds over the whole sample. 

Figure 3. Response of unemployment to an interest rate shock in a recursive VAR 

Euro area

US
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The different time pattern of unemployment responses can be explained by analysing the monetary policy 

transmission channels. Particularly, the strength of the discouraged work effect mostly depends on the 

mechanisms through which monetary shocks influence unemployment. These mechanisms are characterised by 

the particular set of labour market institution adopted by each country. Different labour market institutions might 

generate different reactions in the unemployment rate to interest rate shocks. In Europe, for example, where the 

presence of institutions considerably influences labour market variables, the effect of a monetary policy shock is 

transmitted to the labour market though the participation rate; as a consequence, when the interest rate increases, 

the participation rate initially dampens, leading to a decrease in the unemployment rate. On the contrary, in the 
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US, where institutions do not significantly affect labour market dynamics, a negative shock directly influences 

unemployment, thereby reducing the possibility for the discouraged effect to emerge.4 

3.2.2. Inflation Forecasts and Unemployment Responses to Monetary Policy Shocks 
Figure 4 reports the responses of unemployment to a shock to the interest rate for each inflation forecast and 

each policy rule, for both the euro area and the US. The charts are only illustrative and provide a first qualitative 

and quantitative answer to our main questions. In particular a detailed visual inspection reveals at least four 

interesting aspects.  

Figure 4. Inflation forecasts and unemployment responses to monetary shocks 

1-step-ahead inflation forecast

1-step-ahead inflation forecast 4 -steps-ahead inflation forecast 8-steps-ahead inflation forecast
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4 The difference between the euro area and the US can be appreciated from the impulse responses in Appendix B, where the 
VAR has been enlarged with the growth rates of the labour force. The effect on the labour force of a shock to the interest 
rate is greater and more significant in the euro area than in the US. Also, the presence of the labour force in the VAR seems 
to reduce the initial negative impact on the euro area unemployment rate, thus confirming our intuition regarding the 
discouragement effect. 
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First, the estimated effect of interest rates on unemployment is indeed different if the monetary authority 

designs the policy based on different inflation forecasts, regardless of the country and of the adopted rule.5 This is 

more evident for higher forecast horizons, in particular at the typical horizons for policy decisions (one to two 

years). The charts give a good intuition on how different forecast models for inflation can influence both the 

estimated magnitude of the real effects of a policy decision and the uncertainty about these effects.  

Second, responses are flatter under the TR than under the SIR, though this difference seems hardly significant. 

This evidence suggests that the transmission of monetary shocks – in particular the size of the real effects – is 

likely to be affected by the specific information set that the central bank uses to set interest rates. The relative 

weights that policymakers attach to unemployment and inflation, therefore, largely influence the transmission of 

monetary shocks to labour market variables. It is not surprising that the time pattern of the unemployment 

response is less sensitive to monetary shocks under a TR, when policymakers react to both unemployment 

developments and inflation expectations. If, on the other hand, central bank only focuses on inflation 

expectations, the estimated reaction of unemployment to monetary shocks is stronger. 

Third, a discouraged worker effect could be in place here, as for the benchmark impulse responses, for both 

the US and the euro area. In the former, the initial negative impact is overall more prolonged than in the latter, 

though afterwards there is a higher average positive effect. This seems to be true for the three forecast horizons 

of inflation expectations, and is overall significant. 

Fourth, the cumulative effects are higher in the US than in the euro area for all forecast horizons. In fact, 

average responses for US are around 0.15 pp, whereas those of the euro area are not above 0.05 pp. Table 4 

reports the forecast error decompositions for unemployment, i.e. the percentage of variance of the error made in 

forecasting unemployment due to a specific shock at a given horizon. In principle we can report such a table for 

each of the inflation forecasts. Here we focus only on results relative to the forecast combination method at the 

medium-term horizon of one year.  

Overall, our results do not show considerable interaction among the variables, both across countries and 

across policy rules. Two features are worth mentioning, though. First, in the euro area the dynamics of 

unemployment are largely dominated by its own shocks at most horizons. This result is hardly surprising given 

that the unemployment rate is more persistent in Europe than in the US. Second, from 12 to 24 quarters around 

30-35 percent of the error in the forecast of the US unemployment rate can be attributed solely to interest rate 

shocks. This confirms that, at least in the US, monetary policy can have large and long-lasting effects on real 

activity, as recently argued by Blanchard (2003), for example. 

                                                 
5 This result mainly depends on the different model specifications we use when computing inflation forecast and should not 
be confused with a different functioning of the transmission mechanism.  
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Table 4. Variance decomposition of unemployment 

horizon u i e u i e

1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2 0.90 0.06 0.01 0.02 0.88 0.07 0.01 0.03
3 0.88 0.05 0.01 0.03 0.86 0.06 0.01 0.05
4 0.85 0.04 0.01 0.06 0.84 0.05 0.01 0.08
8 0.72 0.09 0.03 0.10 0.73 0.09 0.02 0.09
12 0.55 0.11 0.05 0.18 0.57 0.12 0.05 0.16
16 0.46 0.13 0.08 0.23 0.48 0.13 0.08 0.21
20 0.42 0.13 0.11 0.24 0.45 0.13 0.10 0.22
24 0.38 0.13 0.14 0.23 0.41 0.13 0.13 0.23

1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2 0.85 0.02 0.10 0.01 0.83 0.03 0.10 0.01
3 0.76 0.06 0.13 0.02 0.71 0.09 0.13 0.03
4 0.65 0.11 0.15 0.04 0.56 0.17 0.16 0.05
8 0.40 0.20 0.17 0.19 0.38 0.21 0.15 0.20
12 0.20 0.27 0.23 0.22 0.25 0.27 0.20 0.20
16 0.16 0.30 0.25 0.20 0.20 0.31 0.21 0.18
20 0.15 0.34 0.24 0.19 0.18 0.35 0.20 0.18
24 0.14 0.34 0.23 0.20 0.17 0.38 0.20 0.18

Euro area

US

Tay lor Rule Strict Inflation Rule

π π

  
As final evidence in this section, we report some results based on a counterfactual analysis. The question we 

ask is: what would have been the level of unemployment in the euro area and in the US if the economies had only 

faced an interest rate shock? The answer might clearly depend on the sample therefore we shut down all shocks 

but the interest rate over two different samples: 1992-1998 and 1999-2005.6 The idea is simply based on 

partitioning the variable of interest (unemployment) into two components: its forecast over 1992-98 and 1999-05 

based on the information available respectively at 1991 and 1998; and the additional part due to innovations in the 

other shocks. By summing just the contribution of the interest rate shock to the forecast of unemployment, we 

obtain the counterfactual unemployment rate had the economy faced only this shock over the sample in analysis.  

Figure 5 reports the experiment run in a VAR where the inflation forecast has been obtained with a TR, we 

have used the forecast combination (i.e. the best forecast on average) and the forecast horizon is four quarters (i.e. 

a typical central bank horizon). Results associated with other methods (or forecast horizons) show only minor 

differences which are not worth reporting. The charts plot the true level of unemployment and the 68% 

confidence bands of a counterfactual level of unemployment obtained had the economy faced only innovations in 

interest rate shocks.  

Some differences between the euro area and the US are clear. As expected also from the variance 

decomposition and the higher degree of unemployment persistence, monetary policy innovations alone can hardly 

                                                 
6 The criteria for these sample choices are to be found in the creation of the EMU and the start of the euro economy. In this 
sense, though interesting from a European perspective, they are a bit ad hoc for the US, where none of such events have 
taken place. 
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explain the behaviour of the unemployment in the euro area. The downward trend between the mid 1990s and 

2001 is certainly due to shocks other than monetary policy. The true level of unemployment falls in the bands 

only at the end of the second sample, when it stabilizes around 9%. On the other hand, US unemployment is 

almost always contained in the band over the sample 1992-1998, while it is over the bands in the recent five years. 

Both findings are hardly surprising: the downward trend of unemployment in the mid 1990s could have been 

predicted given the information up to 1992, regardless of other shocks; on the other hand, the level of 

unemployment in 2002-2004 – a period of historically low interest rates – is above the bands of what would have 

been produced if the only shock in the economy had been a monetary policy shock. 

Figure 5. Historical decomposition 

Euro area US
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To conclude, the evidence provided so far suggests that the estimated effects of shocks to interest rates on 

unemployment might depend on both the method used to forecasting inflation and on the rule that the 
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policymaker uses. This result is independent of whether we consider the euro area or the US. In the latter, 

however, interest rate shocks can have larger and more significant effects on unemployment than in the former, 

the reason being the higher degree of persistence in European unemployment. 

In the next section we look more closely at our results and quantify the uncertainty associated with rules and 

forecasting methods, making use of the posterior densities of the Bayesian estimation.  

4. Quantifying Model Uncertainty 

As mentioned at the beginning of the previous section, uncertainty is an integral element of the monetary 

policy decision process. A distinction is usually made between parameter and model uncertainty. Parameter 

uncertainty motivates our Bayesian choice in the estimation of the VAR.7 This section, instead, concentrates on 

model uncertainty. More precisely, starting from the impulse response function retrieved above, we directly 

measure the estimated uncertainty associated with monetary rules and forecasting models8. 

The conclusions of Section 3 can be further quantified in Tables 5-6, where we report the posterior 

distribution of the responses of unemployment to interest rate shocks for methods, rules and countries, as 

summarised by the 16% and the 84% percentiles at relevant horizons. Uncertainty about the impulse response 

functions is therefore condensed in the distance between the two percentiles. 

Notice first that US responses are overall more significant than those of the euro area, across methods, rules 

and inflation forecast horizons. This is clearly in line with the variance decomposition and the counterfactual 

analysis of the previous section. There does not seem to be any clear pattern across countries as forecasting 

methods are concerned. While for the euro area responses associated with the forecast methods SP and VAR are 

by and large the highest and the most significant, for the US the highest responses are associated with MSVAR 

and RW, and most methods give rise to significant responses, especially under the SIR and at a four-quarter 

inflation forecast horizon. Overall, the strict inflation rule is associated with the most significant responses. 

 

 

 

 

 

                                                 
7 A third source of uncertainty might come from the data and translate into a decision characterised by incompleteness and 
inadequacy of information on the economic variables. We do not tackle this issue here.  
8 To provide a complete plot of the uncertainty, we should consider also the uncertainty around the inflation forecasts. 
However, we decided to take only a mean forecasts and not other quantiles of interest which would have highly complicated 
the presentation of the results, without greatly modifying the main conclusions. 
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Table 5. Impulse responses. Euro area. 

horizon 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84%
1-step-ahead

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.06 0.02 -0.05 0.03 -0.06 0.02 -0.06 0.02 -0.07 0.01 -0.05 0.02 -0.04 0.03 -0.06 0.02
8 -0.03 0.10 0.01 0.14 -0.04 0.09 -0.03 0.09 -0.06 0.09 -0.04 0.09 -0.04 0.09 -0.04 0.10
12 -0.06 0.10 0.01 0.16 -0.07 0.10 -0.06 0.12 -0.08 0.09 -0.08 0.06 -0.08 0.08 -0.07 0.10
16 -0.06 0.12 0.02 0.17 -0.06 0.13 -0.05 0.14 -0.09 0.09 -0.07 0.06 -0.07 0.09 -0.07 0.11
20 -0.06 0.12 0.00 0.16 -0.06 0.13 -0.05 0.15 -0.09 0.09 -0.06 0.07 -0.06 0.09 -0.06 0.11
24 -0.09 0.10 -0.04 0.14 -0.07 0.11 -0.07 0.12 -0.11 0.06 -0.07 0.06 -0.07 0.06 -0.08 0.08

4-step-ahead
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.06 0.02 -0.04 0.03 -0.07 0.02 -0.06 0.02 -0.11 -0.02 -0.07 0.01 -0.04 0.03 -0.05 0.05
8 -0.05 0.09 0.01 0.12 -0.03 0.12 -0.03 0.11 -0.14 0.02 -0.02 0.14 -0.02 0.10 -0.01 0.15
12 -0.09 0.07 0.04 0.18 -0.05 0.14 -0.05 0.13 -0.15 0.04 -0.01 0.16 -0.08 0.06 -0.04 0.14
16 -0.10 0.09 0.06 0.20 -0.04 0.15 -0.05 0.15 -0.13 0.08 -0.01 0.16 -0.07 0.06 -0.04 0.13
20 -0.11 0.09 0.05 0.22 -0.06 0.14 -0.06 0.14 -0.11 0.10 -0.02 0.15 -0.07 0.08 -0.06 0.10
24 -0.15 0.06 0.02 0.21 -0.09 0.11 -0.09 0.11 -0.11 0.09 -0.04 0.13 -0.05 0.10 -0.09 0.08

8-step-ahead
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.07 0.03 -0.07 0.02 -0.06 0.03 -0.07 0.02 -0.12 -0.04 -0.06 0.03 -0.07 0.02 -0.06 0.02
8 -0.05 0.10 0.00 0.12 -0.05 0.10 -0.02 0.13 -0.16 0.01 0.00 0.15 0.00 0.15 -0.02 0.11
12 -0.10 0.09 0.03 0.17 -0.10 0.09 -0.02 0.17 -0.14 0.11 0.02 0.22 -0.02 0.15 -0.04 0.10
16 -0.10 0.11 0.05 0.20 -0.09 0.09 -0.01 0.19 -0.03 0.26 0.04 0.28 -0.02 0.16 -0.02 0.11
20 -0.11 0.11 0.04 0.21 -0.10 0.08 -0.04 0.18 0.00 0.32 0.03 0.30 -0.01 0.19 -0.01 0.14
24 -0.13 0.09 0.01 0.20 -0.11 0.06 -0.06 0.15 -0.07 0.29 0.00 0.30 -0.02 0.20 -0.03 0.13

horizon 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84%
1-step-ahead

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.07 0.01 -0.05 0.03 -0.06 0.01 -0.06 0.01 -0.07 0.01 -0.05 0.02 -0.05 0.03 -0.06 0.02
8 -0.02 0.12 0.02 0.15 -0.02 0.11 -0.01 0.11 -0.04 0.11 -0.02 0.11 -0.01 0.11 -0.02 0.12
12 -0.03 0.13 0.03 0.19 -0.04 0.12 -0.02 0.14 -0.06 0.11 -0.05 0.09 -0.04 0.11 -0.03 0.13
16 -0.02 0.16 0.03 0.19 -0.02 0.14 0.00 0.18 -0.06 0.12 -0.04 0.10 -0.02 0.12 -0.02 0.14
20 -0.03 0.16 0.01 0.18 -0.02 0.15 -0.01 0.18 -0.06 0.12 -0.04 0.09 -0.02 0.12 -0.03 0.13
24 -0.07 0.12 -0.04 0.14 -0.05 0.12 -0.04 0.14 -0.10 0.08 -0.06 0.07 -0.05 0.09 -0.07 0.09

4-step-ahead
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.07 0.01 -0.05 0.03 -0.07 0.01 -0.06 0.02 -0.11 -0.03 -0.06 0.02 -0.04 0.03 -0.04 0.05
8 -0.03 0.10 0.01 0.13 -0.02 0.14 -0.02 0.13 -0.13 0.02 0.02 0.17 -0.01 0.12 0.01 0.17
12 -0.07 0.10 0.05 0.19 -0.03 0.17 -0.03 0.15 -0.14 0.05 0.04 0.22 -0.06 0.08 -0.02 0.17
16 -0.07 0.12 0.06 0.21 -0.03 0.17 -0.02 0.17 -0.12 0.10 0.04 0.22 -0.05 0.08 -0.02 0.16
20 -0.09 0.11 0.04 0.22 -0.06 0.15 -0.05 0.15 -0.10 0.11 0.02 0.21 -0.04 0.08 -0.06 0.12
24 -0.14 0.07 0.01 0.20 -0.10 0.11 -0.10 0.10 -0.11 0.11 -0.02 0.18 -0.03 0.10 -0.10 0.09

8-step-ahead
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.07 0.02 -0.07 0.02 -0.06 0.03 -0.07 0.01 -0.12 -0.04 -0.06 0.02 -0.07 0.02 -0.06 0.02
8 -0.04 0.12 0.00 0.13 -0.04 0.12 -0.01 0.15 -0.14 0.03 0.01 0.17 0.00 0.16 -0.01 0.12
12 -0.08 0.11 0.03 0.18 -0.08 0.11 -0.01 0.19 -0.09 0.14 0.03 0.24 -0.01 0.17 -0.04 0.10
16 -0.08 0.13 0.05 0.22 -0.08 0.11 0.00 0.22 0.02 0.30 0.06 0.28 -0.01 0.17 0.00 0.12
20 -0.09 0.13 0.04 0.22 -0.09 0.09 -0.03 0.20 0.03 0.38 0.04 0.32 0.01 0.20 0.00 0.14
24 -0.13 0.10 0.01 0.20 -0.12 0.06 -0.05 0.17 -0.04 0.34 0.00 0.33 0.00 0.21 -0.02 0.13

MSAR VAR MSIHVAR COMBRW SP ESTAR ARMA

MSAR VAR MSIHVAR COMBRW SP ESTAR ARMA
 Taylor rule

Strict inflation rule

 
 

 

 

 

22
ECB 
Working Paper Series No 725
February 2007



Table 6. Impulse responses. US.  

horizon 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84%
1-step-ahead

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.14 -0.02 -0.14 -0.01 -0.14 -0.04 -0.13 -0.03 -0.14 -0.02 -0.13 0.00 -0.13 -0.02 -0.14 -0.03
8 -0.09 0.14 -0.07 0.14 -0.06 0.10 -0.05 0.13 -0.07 0.14 -0.04 0.18 -0.05 0.15 -0.06 0.12
12 -0.05 0.21 -0.04 0.21 -0.01 0.19 0.00 0.23 -0.03 0.21 0.02 0.25 -0.01 0.22 -0.01 0.21
16 0.00 0.21 0.00 0.21 0.03 0.24 0.05 0.27 0.02 0.24 0.04 0.25 0.03 0.25 0.03 0.23
20 0.01 0.24 -0.01 0.21 0.04 0.26 0.05 0.29 0.03 0.27 0.04 0.29 0.04 0.27 0.04 0.26
24 -0.01 0.26 -0.04 0.19 0.02 0.24 0.01 0.27 0.01 0.26 0.00 0.28 0.01 0.27 0.01 0.26

4-step-ahead
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.13 -0.02 -0.13 -0.01 -0.13 -0.03 -0.14 -0.03 -0.13 -0.01 -0.06 0.04 -0.10 0.01 -0.13 -0.03
8 -0.03 0.18 -0.01 0.24 -0.01 0.15 -0.06 0.13 -0.02 0.17 0.10 0.27 0.10 0.30 0.03 0.20
12 0.02 0.29 0.06 0.35 0.00 0.25 -0.04 0.22 0.02 0.27 0.08 0.29 0.14 0.43 0.05 0.30
16 0.04 0.33 0.05 0.36 0.00 0.27 0.00 0.26 0.02 0.28 0.02 0.26 0.10 0.45 0.03 0.29
20 0.03 0.38 0.01 0.35 0.00 0.26 0.01 0.31 0.01 0.30 -0.03 0.25 0.02 0.39 0.02 0.29
24 0.00 0.41 -0.05 0.32 -0.02 0.24 0.00 0.31 -0.02 0.30 -0.11 0.23 -0.10 0.32 -0.03 0.25

8-step-ahead
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.14 -0.02 -0.11 0.02 -0.10 0.01 -0.12 -0.01 -0.11 0.00 -0.11 0.03 -0.09 0.02 -0.12 -0.02
8 -0.04 0.19 -0.05 0.24 -0.01 0.17 -0.06 0.12 0.00 0.18 -0.13 0.19 0.05 0.30 -0.04 0.12
12 0.00 0.32 -0.05 0.34 -0.05 0.21 -0.07 0.18 0.00 0.27 -0.10 0.20 0.10 0.42 -0.07 0.14
16 0.00 0.31 -0.02 0.27 -0.06 0.18 -0.06 0.16 -0.01 0.23 -0.04 0.26 0.03 0.37 -0.06 0.14
20 -0.05 0.27 -0.05 0.22 -0.06 0.16 -0.06 0.15 -0.03 0.19 -0.04 0.32 -0.05 0.29 -0.05 0.12
24 -0.11 0.22 -0.11 0.16 -0.08 0.13 -0.07 0.11 -0.07 0.15 -0.05 0.34 -0.11 0.23 -0.07 0.09

horizon 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84% 16% 84%
1-step-ahead

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.15 -0.04 -0.15 -0.03 -0.16 -0.05 -0.15 -0.04 -0.15 -0.04 -0.15 -0.04 -0.15 -0.04 -0.15 -0.04
8 -0.06 0.12 -0.05 0.12 -0.04 0.12 -0.03 0.14 -0.05 0.11 -0.04 0.14 -0.04 0.15 -0.04 0.13
12 -0.02 0.21 -0.02 0.21 0.02 0.25 0.04 0.28 -0.01 0.21 0.03 0.26 0.00 0.25 0.01 0.23
16 0.01 0.26 0.00 0.24 0.05 0.32 0.08 0.35 0.03 0.26 0.05 0.30 0.03 0.31 0.03 0.27
20 0.02 0.31 0.01 0.25 0.06 0.34 0.07 0.37 0.05 0.31 0.06 0.36 0.05 0.37 0.05 0.31
24 0.01 0.34 -0.03 0.23 0.02 0.32 0.02 0.35 0.03 0.31 0.02 0.38 0.03 0.37 0.02 0.32

4-step-ahead
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.14 -0.04 -0.14 -0.02 -0.14 -0.03 -0.15 -0.05 -0.14 -0.03 -0.11 0.00 -0.11 0.00 -0.14 -0.04
8 -0.02 0.17 0.02 0.23 0.01 0.18 -0.04 0.14 0.01 0.18 0.04 0.25 0.11 0.34 0.03 0.21
12 0.04 0.31 0.07 0.39 0.02 0.31 -0.02 0.25 0.03 0.32 0.09 0.36 0.16 0.55 0.05 0.33
16 0.05 0.38 0.05 0.40 0.00 0.35 0.00 0.33 0.04 0.36 0.08 0.40 0.12 0.61 0.04 0.33
20 0.04 0.46 0.01 0.41 0.00 0.37 0.03 0.40 0.04 0.40 0.07 0.46 0.02 0.61 0.03 0.36
24 0.01 0.53 -0.05 0.37 -0.03 0.32 0.01 0.43 0.01 0.41 0.00 0.45 -0.11 0.55 -0.03 0.35

8-step-ahead
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -0.16 -0.04 -0.12 0.00 -0.11 0.01 -0.14 -0.02 -0.13 -0.01 -0.13 -0.01 -0.10 0.03 -0.14 -0.02
8 -0.01 0.21 0.00 0.24 0.00 0.21 -0.04 0.15 0.01 0.20 -0.12 0.12 0.09 0.37 -0.02 0.17
12 0.04 0.39 0.02 0.37 -0.05 0.27 -0.07 0.23 0.01 0.32 -0.11 0.21 0.10 0.61 -0.06 0.24
16 0.00 0.42 0.00 0.34 -0.07 0.27 -0.07 0.25 -0.01 0.33 0.00 0.35 0.01 0.58 -0.06 0.23
20 -0.07 0.40 -0.05 0.28 -0.08 0.25 -0.08 0.23 -0.03 0.29 0.01 0.45 -0.08 0.52 -0.08 0.19
24 -0.16 0.35 -0.12 0.22 -0.10 0.22 -0.10 0.20 -0.09 0.23 -0.01 0.50 -0.18 0.50 -0.11 0.15

 Taylor rule

Strict inflation rule
MSAR VAR MSIHVAR COMBRW SP ESTAR ARMA

MSAR VAR MSIHVAR COMBRW SP ESTAR ARMA

 
To quantify the uncertainty associated with model and rules, one could ask what is the degree of overlap 

between the posterior densities of the impulse response functions. Figure 6 plots the standard deviations of the 

two percentiles that characterise our posterior densities (16 and 18%) across the eight forecast methods for each 

step of the impulse responses.  
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The uncertainty in this chart is measured both by the absolute size of the standard deviation associated with 

each percentile and by the distance between the two standard deviations. Several comments are in order here.  

 

Figure 6. Overall uncertainty across methods, rules and countries 
Standard deviations across percentiles 
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First, uncertainty increases with the forecast horizon, as somehow expected. In particular, the dispersion 

among the 84% percentiles seems to increase more than the one among the 16% percentiles, which means that 

there is more uncertainty associated with the upper part of the distributions. Second, the typical pattern of the 

standard deviations consists of a steep increase and then a decrease over the steps of the impulse responses. This 

is true regardless of the rule, the country or the horizon of the inflation forecast. In other words, responses of 
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unemployment associated with the eight inflation forecasts are more dispersed around the peak value of the 

impulses, typically after 10-15 steps. Third, the uncertainty associated with the TR is slightly lower that the one 

associated with the SIR. This result confirms our previous conclusion that responses can be higher under the SIR 

than under the TR. Finally, the uncertainty associated with the US responses is higher than the one associated 

with the euro area, across rules and forecast methods. In particular, this is true for the upper part of the 

distribution and is consistent with higher responses of US unemployment to a shock to interest rate. 

Overall, these findings support the idea of a high degree of uncertainty associated with the different inflation 

forecasts, especially around the peak impact of the interest rate on unemployment. The question now is: which 

inflation forecast has the highest level of uncertainty about the estimated responses of unemployment? This issue 

is important because the degree of uncertainty might significantly influence the accuracy of monetary actions. The 

identification of which forecasting model is likely to work most robustly across a range of possible methods 

decreases the uncertainty surrounding the future development of the target variable and the exact impact of the 

monetary policy instrument on labour market variables. 

Figure 7 plots the distance between the 84% and the 16% percentile for each method, country and rule: the 

higher the difference, the more disperse is the posterior distribution and the more uncertain is the estimated 

response of unemployment to an interest rate shock associated with a given forecasting method.  

Although it is not possible to find clear and homogeneous patterns across methods, rules and countries, some 

recurring features are worth mentioning. First of all, it should be noted that the highest uncertainty is on average 

associated with non-linear methods, in particular the MSAR for the euro area and the MSVAR for the US (dashed 

lines). The intuition for this is to be found in the possible absence of clear structural breaks over the sample under 

analysis. Furthermore, the best method seems to depend on the forecasting horizon and on the specific country. 

Nevertheless, the lowest uncertainty on average is associated with the forecast combination method (bold line in 

the charts). In fact, while in the case of US the forecast combination beats all the other methods independently of 

the rule and the forecast horizon, the lowest uncertainty for the euro area is associated with the VAR for the one-

quarter-ahead forecast, to the MSVAR for the four-quarters-ahead forecast and with the COMB for the eight-

quarters-ahead forecast, independently of the policy rule.  

Overall, the results suggest that central banks face considerable uncertainty about the future development of 

target variables and the impact of a given measure. Model uncertainty strengthens the case for a more cautious 

monetary policy strategy. Specifically, in order to reduce policy mistakes, central banks should not react strongly 

to out-of-target developments in inflation. This is because the dynamic underlying the price evolution might be 

surrounded by a high degree of uncertainty; as a consequence, fine-tuning monetary policy might amplify the 

business cycle.  
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Figure 7. Model uncertainty: distance between the 84% and the 16% percentile for each method, 
country and rule 

Euro area

US

Taylor rule Strict Inflation Rule

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RW SP ESTAR ARMA MSAR VAR MSVAR COMB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RW SP ESTAR ARMA MSAR VAR MSVAR COMB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RW SP ESTAR ARMA MSAR VAR MSVAR COMB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RW SP ESTAR ARMA MSAR VAR MSVAR COMB

  
The problem of model uncertainty suggests that, when evaluating risks to price stability, central banks should 

not concentrate on only one model, but instead should analyse as wide a range of models as possible. Overall, our 

results indicate that combining forecasts from many models not only yields more accurate forecasts than those of 

any specific model, but also reduces the uncertainty associated with the estimated effects of the policy decision. A 

monetary strategy that takes into account the information content of multiple models or multiple versions of 

models significantly improves the decision-making process. When various data-driven models (linear, nonlinear, 

univariate, multivariate) complement theoretical models, the uncertainty related to the effects of monetary actions 
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on real economy substantially dampens. These results are in line with the model-combination strategy that central 

banks already follow when assessing the risks to price stability. 

 

5. Conclusions  

In this paper we have shown how different models for forecasting inflation lead to different estimated effects 

of monetary policy on unemployment, beside the disparities that could be related to labour market institutions. 

Our evidence did suggest that the US might have a set of institutions which decreases the persistence of monetary 

shocks on unemployment, whereas euro area institutions could amplify the persistence of the reaction of 

unemployment to monetary shocks. However, regardless of the country and of the particular monetary policy rule 

adopted, a decision based on different inflation forecasts leads to considerable uncertainty regarding its real 

effects.  

In order to forecast inflation, we have chosen eight competing models which differ not only in terms of the 

selected explicative variables and estimation methods, but also in terms of other core assumptions, such as their 

functional form. A ranking of the models in terms of forecasting performance suggests that there is no single 

model whose performance is clearly preferred; rather, a combination of forecasts appears most desirable.  

The inflation forecasts have been used in a standard VAR to quantify the uncertain real effects of a shock to 

the interest rate under two different policy rules. Our results show that model uncertainty is a significant issue 

which strengthens the case for a more cautious policy strategy. In fact, the evidence provided here suggests that, 

when evaluating risks to price stability, central banks should not concentrate on one single model, but instead 

should analyse as wide a range of models as possible. Assessments of the price outlook based on different models, 

however, lead to different policy recommendations. Best practice, therefore, would be to combine results from 

different models as a device to reduce uncertainty. Our results indicate that combining inflation forecasts from 

many models not only yields more accurate forecasts than those of any specific model, but also seems to reduce 

the uncertainty associated with the estimated effects of policy decisions.  
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Appendix 
A. Competing Models to forecast inflation 

The empirical analysis presented in the paper analyzes the forecasting properties of eight competing models 

over horizons from one to eight quarters. 

The first model consists of a driftless random walk process (RW). This simple framework is typically used as a 

benchmark against which inflation rate models are judged. The dynamics of the model is as follows: 

1t t tπ π ε−= +  (A.1) 

where tπ represents the nominal inflation rate. 

The second model is a univariate time series model that combines an autoregressive process with a moving 

average process. The length of the autoregressive term as well as the moving average term is chosen with standard 

selection criteria. The model we estimate is an ARMA(1,1): 

1 1t t t tπ απ ε θε− −= + +  (A.2) 

The third model examined in the paper computes out-of-sample forecasts by using spectral analysis (SP). The 

time-domain representation may not necessarily be the most informative one. In particular, spectral analysis might 

be useful in detecting regular cyclical patterns or periodicities in transformed inflation rate data, or other 

significant pieces of information that are not visible in the time-domain of the series. Frequency-domain 

representation obtained through an appropriate transformation of the time series enable us to access this 

information. 

In order to map the inflation rate from the time domain into the frequency domain we apply the Fourier 

transformation. Starting from the time series { }1

T
tπ  this transformation is based on the following equation: 

( ) ( )( )inf inf

1

2 exp 2 1t
t

j T ij t T
τ

π π π π
=

= − −∑  (A.3) 

where the frequencies range from zero to ( )( )2 1t Tπ −  by increments of 2 Tπ .9 Starting from the moving 

average representation of the selected time series we follow the procedure outlined in Koopmans (1974) to 

compute out-of sample forecasts using spectral techniques. 

The fourth model is a four-variable vector autoregressive (VAR) model: 
1

1

k

t i t i t
i

y c y ε
−

−
=

= + Γ +∑  (A.4) 

                                                 
9 In equation A.3, infπ is the inflation whereas theπ has the usual mathematical meaning. 
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where [ ]   t t t t ty u i eπ ′= , and tu  is the unemployment rate; tπ  is inflation rate; ti  is the short-term interest 

rate, and te  is the annual change of the nominal exchange rate.  

The fifth model is a smooth transition autoregressive model (STAR). STAR models were originally introduced 

by Terasvirta and Anderson (1992). Their statistical properties are studied in Luukkonen et al. (1988), Luukkonen 

and Terasvirta (1991), Granger and Terasvirta (1993), Eitrheim and Terasvirta (1996). The general form of the 

STAR10 model is as follows: 

( ) ( )' '
10 1 20 2 ; ,t t t t d tπ φ φϖ φ φ ϖ π γ μ ε−= + + + Γ +  (A.5) 

where ( )1 , ........,t t t pϖ π π− −=  is a vector of lagged values of inflation,  and 2(0, )t iidε σ∼ . The transition 

function ( ); ,t dπ γ μ−Γ  depends on a transition variable (π −t d ), the speed of adjustment parameter 0γ> , and 

the equilibrium parameter μ . We test the specific form of the transition function by employing a battery of tests 

proposed in Granger and Teräsvirta (1993). In the final specification, data seem to suggest that for both the US 

and the euro area inflation rates are better modelled with an ESTAR form: 

( ) ( ){ } ( )
4

2 *
1 1

1

1 expt t t i t i t
i

π μ π μ γ π μ α π μ ε− − −
=

⎡ ⎤= + − + − − − − +⎢ ⎥⎣ ⎦ ∑  (A.6) 

where the transition function has an exponential from, ( ) ( ){ }2
1; , 1 expt d tπ γ μ γ π μ− −

⎡ ⎤Γ = − − −⎢ ⎥⎣ ⎦
. This 

transition function has a minimum of zero at 4tπ μ− = . As a consequence, the ESTAR model is in the first 

regime when 4tπ −  is close to μ  and in the second regime when deviations of 4tπ −  from its equilibrium value (in 

both direction) are large. Within each regime, the inflation rate reverts to a linear autoregressive representation, 

with different parameter values and asymmetric speeds of adjustment. The resulting ESTAR models are estimated 

on our data by nonlinear least squares (see Gallant, 1987; Gallant and White, 1988). 

The sixth model is a univariate markov-switching model (MS-AR) similar to the one estimated by Engel and 

Hamilton (1990). In this model, the dynamic of discrete shifts follows a two-state Markov process with an AR 

component. Standard criteria (AIC, HQ and SC) favour an autoregressive structure of order four. The model 

therefore has the form: 

( )
4

1

( ) ( )t t i t i t i t
i

s sπ μ α π μ ε− −
=

− = − +∑  (A.7) 

                                                 
10 The ESTAR model is a particular class of the STAR model with the transition function having an exponential form. Note 
that the ESTAR can be viewed as a generalization of the double-threshold TAR model. 
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Where the residuals are conditionally Gaussian, ( )( )20,t t ts NID sε σ∼ , the conditional mean ( )tsμ  switches 

between two states, and ts  is a generic ergodic Markov chain defined by the transition probabilities: 

( )
2

1
1

Pr | , 1 , {1, 2}ij t t ij
i

p s j s i p i j+
=

= = = = ∀ ∈∑ . 

The seventh model consists of a markov-switching VAR (MS-VAR). As in the linear case, it is made up of 

four variables (u, π , i and e). The hypothesis behind the specific form of the estimated model is that the dynamics 

of the inflation rate process follows a 2-state Markov chain. The idea is that the relation between the inflation rate 

and a set of explanatory variables is time-varying, but it is constant when we condition on the stochastic and 

unobservable regime variable. Concretely, the model allows for an unrestricted shift in the intercept and the 

variance-covariance matrix and for two lags in each variable 11: 

1

1

( )
k

t t i t i t
i

y c s y ε
−

−
=

= + Γ +∑  (A.8) 

where ( )( )0,t t ts NID sε ∼ Σ . 

The last model accounts for the time-varying forecast ability of alternative models and combines all of them 

adapting the methodology proposed in Hong and Lee (2003), Yang (2004) and Yang and Zou (2004) and 

specified in Section 2. The idea behind the combination of forecasting techniques is that no forecasting method is 

fully appropriate for all situations. A single forecasting model might only be optimal conditional on given 

realizations, information set, model specification or sample period. By combining methods, we can compensate 

for the weakness of each forecasting model under particular conditions.  

Denoted tπ  the nominal inflation rate and 
k
tπ  the inflation rate forecast series obtained from the seven 

models indicated before (i.e. k= RW, ARMA, SP, MS-AR, VAR, MS-VAR, ESTAR) the combined forecast, 
COM
tπ , is obtained as: 

7

1

COM k
t tkt

k

π ω π
=

=∑  (A.9)

where the weights ( ktω ) attached to each model are calculated as follows:  

                                                 
11 We also estimated the model allowing for a shift in the mean of the variables. The results we obtained from the two 
specifications are very similar with respect to the regime classification as well as to the parameter values. As we expected, the 
differences between the two models mainly consist of the different pattern of the dynamic propagation of a permanent shift 
in regime. More precisely, in the MSIH model, the expected growth of the variables responds to a transition from one state 
to another in a smoother way. See Krolzig (1997) on the peculiarity of the two models.  
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and 2
tσ  is the sample variance of the inflation rate { } 1

1

t
t j

π −

=
. Precisely, 

1
2 1 2

1

( 2) ( )
t

t j t
j

tσ π μ
−

−

=

= − −∑ and 

( )
1

1

1

1
t

t j
j

tμ π
−

−

=

= − ∑ .  

Yang (2004) examined the theoretical convergence properties of a generalisation of this combination method 

method and find that it has a significant stability advantage in forecasting over some popular model selection 

criteria. In particular,  as already mentioned, the specific relationship imposed insures that a weight attributed to a 

certain model at time t is larger the larger its ability to forecast the actual inflation rate in period t-1.  

 

B. Data and impulse responses 

Figure B.1 plots the variables used in the empirical analysis. The sources are DataStream and the AWM (see 

Fagan et al. 2001). The inflation rate in each country is calculated as the percentage change in the annual CPI 

inflation rate, i.e. ( )4100 log logt tCPI CPI −− . US interest rate is the Federal Funds Rate. Euro area interest rate is 

the short-run rate of the AWM database.  

Figure B.2 plot the impulse responses of the US and the euro area economies in a recursive VAR ordered as in 

section 3.1, with the addition of the labour force to verify the discouragement hypothesis. 
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Figure B.1: The data used in the analysis 
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Figure B2. Impulse response functions in a recursive VAR with labour force

USA

Shocks to

R
es

po
ns

es
 o

f

INFLATION

UNEMPLOYMENT

LFORCE

INTRATE

EXRATE

INFLATION

INFLATION

UNEMPLOYMENT

UNEMPLOYMENT

LFORCE

LFORCE

INTRATE

INTRATE

EXRATE

EXRATE

0 5 10 15 20
-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.16

-0.08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0 5 10 15 20
-0 .16

-0 .08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0 5 10 15 20
-0.16

-0.08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0 5 10 15 20
-0.16

-0.08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0 5 10 15 20
-0.16

-0.08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0 5 10 15 20
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-1 .00

-0 .75

-0 .50

-0 .25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-0.027

-0.018

-0.009

0.000

0.009

0.018

0.027

0.036

0.045

0.054

0 5 10 15 20
-0.027

-0.018

-0.009

0.000

0.009

0.018

0.027

0.036

0.045

0.054

0 5 10 15 20
-0.027

-0.018

-0.009

0.000

0.009

0.018

0.027

0.036

0.045

0.054

0 5 10 15 20
-0.027

-0.018

-0.009

0.000

0.009

0.018

0.027

0.036

0.045

0.054

0 5 10 15 20
-0.027

-0.018

-0.009

0.000

0.009

0.018

0.027

0.036

0.045

0.054

Euro area

Shocks to

R
es

po
ns

es
 o

f

INFLATION

UNEMPLOYMENT

LFORCE

INTRATE

EXRATE

INFLATION

INFLATION

UNEMPLOYMENT

UNEMPLOYMENT

LFORCE

LFORCE

INTRATE

INTRATE

EXRATE

EXRATE

0 5 10 15 20
-0.48

-0.32

-0.16

0.00

0.16

0.32

0.48

0.64

0 5 10 15 20
-0 .48

-0 .32

-0 .16

0.00

0.16

0.32

0.48

0.64

0 5 10 15 20
-0.48

-0.32

-0.16

0.00

0.16

0.32

0.48

0.64

0 5 10 15 20
-0.48

-0.32

-0.16

0.00

0.16

0.32

0.48

0.64

0 5 10 15 20
-0.48

-0.32

-0.16

0.00

0.16

0.32

0.48

0.64

0 5 10 15 20
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20
-0 .15

-0 .10

-0 .05

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20
-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-0 .75

-0 .50

-0 .25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20
-0 .02

-0 .01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 

33
ECB 

Working Paper Series No 725
February 2007



References 
Benati L., (2001),  Some empirical evidence on the 'discouraged worker' effect, Economics Letters, vol. 70, issue 

3, pp.387-395. 
Bernanke B., Boivin J. & P.S. Eliasz, (2005) Measuring the Effects of Monetary Policy: A Factor-augmented 

Vector Autoregressive (FAVAR) Approach, The Quarterly Journal of Economics, MIT Press, vol. 120(1), pp.387-422. 
Blundell R., Ham J, and Meghir C. (1998), Unemployment, Discouraged Workers and Female Labour Supply”, 

Research in Economics, 52, pp.103-131. 
Ciccarelli M. and Rebucci A. (2003), BVARs: A Survey of the recent literature with an application to the 

European Monetary System, Rivista di Politica Economica, Serie III, pp. 47-112. 
 Clark K.B. and Summers L.H., 1982, Labour Force Participation: Timing and Persistence, Review of Economic 

Studies, vol. 49, issue 5, pp. 825-44. 
Clemen, R. T. (1989), Combining forecasts: a review and annotated bibliography, International Journal of 

Forecasting, 5, pp.559-83. 
Darby, J., Hart, R., Vecchi, M., 2001, Labour Force Participation and Business Cycle Fluctuations: A 

Comparative Analysis of Europe, Japan and the United States, Japan and the World Economy, 13, pp.113-133. 
Diebold, F. X., and R. S. Mariano (1995), “Comparing Predictive Accuracy”, Journal of Business and Economic 

Statistics, 13(3), pp.253-263. 
Eitrheim, Ø. and Terasvirta, T. (1996) Testing the adequacy of smooth transition autoregressive models, 

Journal of Econometrics, 74, pp.59–75. 
Engel, C., Hamilton, J.D. (1990), Long swings in the dollar: are they in the data and do markets know it?, 

American Economic Review 80, pp.689–713. 
Fagan, G., Henry, J. and Mestre, R. (2001): "An Area-Wide Model (AWM) for the Euro area, ECB Working 

Paper n.42. 
Gallant, A.R. (1987), Nonlinear Statistical Models, New York: Wiley. 
Gallant, A.R. and H. White (1988), A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models, 

Oxford: Oxford University Press. 
Granger, C. W. J. and Ramanathan, R. (1984), Improved Methods of Combining Forecasts, Journal of 

Forecasting, 3, pp.197- 204. 
Granger C.W.J. and Teräsvirta T. (1993), Modelling Non-Linear Economic Relationships, Oxford University Press, 

Oxford. 
Hendry David F. & Kirstin Hubrich, (2006), Forecasting economic aggregates by disaggregates, ECB Working 

Paper Series 589. 
Harvey, D., S. Leybourne and P. Newbold (1997), Testing the Equality of Prediction Mean Squared Errors, 

International Journal of Forecasting, Vol.13, pp. 281-91. 
Hong and Lee (2003), Inference on via generalized spectrum and nonlinear time series models, The Review of 

Economics and Statistics, 85(4), pp.1048-1062. 
Koopmans (1974), The Spectral Analysis of Time Series, New York, Academic Press. 
Krolzig H.-M. (1997), Markov-Switching Vector Autoregressions Modelling, Statistical Inference, and Application to 

Business Cycle Analysis, Springer Verlag, pp. 357. 
Long, C. (1953), Impact of effective demand on the labour supply, American Economic Review, Papers and 

Proceedings, 43, 458-467.  
Luukkonen, R., Saikkonen, P. and Terasvirta, T. (1988) Testing linearity against smooth transition 

autoregressive models, Biometrika, 75, 491–9. 
Luukkonen, R. and Terasvirta, T. (1991) Testing linearity of economic time series against smooth cyclical 

asymmetry, Annales d’Economie et de Statistiques, 20/21, 125–42. 
Min, C.-K. and A. Zellner (1993): “Bayesian and non-Bayesian methods for combining models and forecasts 

with applications to forecasting international growth rates,” Journal of Econometrics, 56, 89-118. 
Sims, C. A and Zha, T., (1998), Bayesian Methods for Dynamic Multivariate Models, International Economic 

Review, vol. 39(4), pages 949-68. 

34
ECB 
Working Paper Series No 725
February 2007



Stock J. and M. Watson (2001), Vector Autoregressions, Journal of Economic Perspectives, 15, 4, 101-115. 
Stock, J.H. and M. W. Watson (2004), Combination Forecasts Of Output Growth In A Seven-Country Data 

Set, Journal of Forecasting, 23 (6): 405-430. 
Stock, J.H. and M. W. Watson (2006): “Forecasting with many predictors,” in Elliott, Granger and 

Timmermann, eds., Handbook of Economic Forecasting, forthcoming, Elsevier. 
Terasvirta, T. and Anderson, H. M. (1992) Characterizing nonlinearities in business cycles using smooth 

transition autoregressive models, Journal of Applied Econometrics, 7, S119–S136. 
Timmermann, Allan (2006): “Forecast Combinations,” in Elliott, Granger and Timmermann, eds., Handbook 

of Economic Forecasting, forthcoming, Elsevier. 
Yang Y. and Zou H. (2004), Combining time series models for forecasting, International Journal of Forecasting, 

vol.20, pp. 69– 84. 
Yang Y. (2004), Combining forecasting procedures: some theoretical results, Econometric Theory, vol. 20, pp.176-

222. 
 
 
 

35
ECB 

Working Paper Series No 725
February 2007



36
ECB 
Working Paper Series No 725
February 2007

European Central Bank Working Paper Series

For a complete list of Working Papers published by the ECB, please visit the ECB’s website
(http://www.ecb.int)

691 “The yield curve as a predictor and emerging economies” by A. Mehl, November 2006.

692 “Bayesian inference in cointegrated VAR models: with applications to the demand for 
euro area M3” by A. Warne, November 2006.

693 “Evaluating China’s integration in world trade with a gravity model based benchmark” 
by M. Bussière and B. Schnatz, November 2006.

694 “Optimal currency shares in international reserves: the impact of the euro and the prospects for the dollar” 
by E. Papaioannou, R. Portes and G. Siourounis, November 2006.

695 “Geography or skills: What explains Fed watchers’ forecast accuracy of US monetary policy?” by H. Berger, 
M. Ehrmann and M. Fratzscher, November 2006.

696 “What is global excess liquidity, and does it matter?” by R. Rüffer and L. Stracca, November 2006.

697  “How wages change: micro evidence from the International Wage Flexibility Project” 
by W. T. Dickens, L. Götte, E. L. Groshen, S. Holden, J. Messina, M. E. Schweitzer, J. Turunen, 
and M. E. Ward, November 2006.

698 “Optimal monetary policy rules with labor market frictions” by E. Faia, November 2006.

699 “The behaviour of producer prices: some evidence from the French PPI micro data” 
by E. Gautier, December 2006.

700 “Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to
principal components?” by C. De Mol, D. Giannone and L. Reichlin, December 2006.

701 “Is there a single frontier in a single European banking market?” by J. W. B. Bos and 
H. Schmiedel, December 2006.

702 “Comparing financial systems: a structural analysis” by S. Champonnois, December 2006.

703 “Comovements in volatility in the euro money market” by N. Cassola and C. Morana, December 2006.

704 “Are money and consumption additively separable in the euro area? A non-parametric approach” 
by B. E. Jones and L. Stracca, December 2006.

705 “What does a technology shock do? A VAR analysis with model-based sign restrictions” 
by L. Dedola and S. Neri, December 2006.

706 “What drives investors’ behaviour in different FX market segments? A VAR-based return
decomposition analysis” by O. Castrén, C. Osbat and M. Sydow, December 2006.

707 “Ramsey monetary policy with labour market frictions” by E. Faia, January 2007.



37
ECB 

Working Paper Series No 725
February 2007

708 “Regional housing market spillovers in the US: lessons from regional divergences in a common monetary 
policy setting” by I. Vansteenkiste, January 2007.

709 “Quantifying and sustaining welfare gains from monetary commitment” by P. Levine, P. McAdam 
and J. Pearlman, January 2007.

710 “Pricing of settlement link services and mergers of central securities depositories” by J. Tapking, 
January 2007.

711 “What “hides” behind sovereign debt ratings?” by A. Afonso, P. Gomes and P. Rother, January 2007.

712 “Opening the black box: structural factor models with large cross-sections” by M. Forni, D. Giannone, 
M. Lippi and L. Reichlin, January 2007.

713 “Balance of payment crises in emerging markets: How early were the “early” warning signals?” by M. 
Bussière, January 2007.

714 “The dynamics of bank spreads and financial structure” by R. Gropp, C. Kok Sørensen and J.-D. Lichtenberger, 
January 2007.

715 “Emerging Asia’s growth and integration: How autonomous are business cycles?” by R. Rüffer, M. Sánchez 
and J.-G. Shen, January 2007.

716 “Adjusting to the euro” by G. Fagan and V. Gaspar, January 2007.

717 “Discretion rather than rules? When is discretionary policy-making better than the timeless perspective?” 
by S. Sauer, January 2007.

718 “Drift and breaks in labor productivity” by L. Benati, January 2007.

719 “US imbalances: the role of technology and policy” by R. Bems, L. Dedola and F. Smets, January 2007.

720 “Real price wage rigidities in a model with matching frictions” by K. Kuester, February 2007.

721 “Are survey-based inflation expectations in the euro area informative?” by R. Mestre, February 2007.

722 “Shocks and frictions in US business cycles:  a Bayesian DSGE approach” by F. Smets and R. Wouters, 
February 2007.

723 “Asset allocation by penalized least squares” by S. Manganelli, February 2007.

724 “The transmission of emerging market shocks to global equity markets” by L. Cuadro Sáez, M. Fratzscher 
and C. Thimann, February 2007.

725 ”Inflation forecasts, monetary policy and unemployment dynamics: evidence from the US and the euro area”
by C.  Altavilla and M. Ciccarelli, February 2007.



ISSN 1561081-0

9 7 7 1 5 6 1 0 8 1 0 0 5


	Inflation forecasts, monetary policy and unemployment dynamics; evidence from the US and the euro area
	Contents
	Abstract
	Non-Technical Summary
	1. Introduction
	2. Forecasting Inflation
	3. Structural Inference and Policy Analysis
	3.1 Model and Estimation
	3.2 Results
	3.2.1 A Benchmark
	3.2.2. Inflation Forecasts and Unemployment Responses to Monetary Policy Shocks


	4. Quantifying Model Uncertainty
	5. Conclusions
	Appendix
	A. Competing Models to forecast inflation
	B. Data and impulse responses

	References
	European Central Bank Working Paper Series



