# The Determinants of University Students Success: a Bivariate Latent Variable Model 

Claudia Pigini


#### Abstract

The analysis of performance indicators of university students has become of wide interest expecially in Italy where, over the last few decades, graduation rates have been well below the average of both European and OECD countries. This paper proposes an alternative method to jointly estimate the determinants of students academic success, in terms of both potential credits and retention, one year after they first enrolled and a further analysis to evaluate whether there are any factors significantly determining the probability of dropping out, once we consider the students potential academic performance ceteris paribus. We implement the algorithm to estimate the parameters of a bivariate latent variable system and then of a conditional mean equation.


## 1 Introduction and motivation

The analysis of performance indicators of university students has become of wide interest expecially in Italy where, over the last few decades, completion rates have been well below the average of both European and OECD countries ${ }^{1}$. These indicators have moslty been idenified with the drop out rate and the progression rate, being the latter defined as the ratio bewteen credits actually acquired by the student during the first year and the credits the student was supposed to acquire at that same time. The availability of administrative data for some Italian universities lead to the application of several empirical strategies, all aiming to find the determinants of such indicators and whether the university reform, introduced in $2001^{2}$, has improved them. The determinants of student performance, expecially of the drop out rate, have been classified in six categories by the empirical literature (Di Pietro, Cutillo (2008)): personal, school related, ability related, family related, geographical and attendance related.

Although the use of probability models and treatment evaluation procedures in the existing literature has given consistent results about the determinants of the drop-out and progression rate, we did not find any attempt to evaluate the student's probability of success in terms of both academic progression and

[^0]attainment. This paper proposes an alternative method to jointly estimate the determinants of students academic success, in terms of both potential credits and retention, one year after they first enrolled and a further analysis to evaluate whether there are any significant factors determining the probability of dropping out, once we consider students "ability" ceteris paribus. Academic success is identified with the student's propension not to drop-out and the potential credits he/she may acquire during the first year. Students who drop out are those who do not enroll into the second year. Because Italian universities allow for registration into the second year even if the student has not passed all the exams scheduled for the first one, we are able to observe if he/she continues the studies via enrolment into the second year. We consider a system of two latent variables where the first equation has as the dependent variable the potential credits the students may acquire during the first year, while the second models the propensity to enroll into the second year (student's retention). We use the concept of potential credits and we treat it as a latent variable as we do not observe how many credits a student may acquire during the first year for several reasons. First of all we only observe the fixed amount of credits that is assigned to each exam the student has passed. Secondly, the Italian university grading system has a peculiarity that makes it reasonable to choose a latent variable approach for credits: unlike other students, the Italian ones can choose to refuse the grade of an exam they sit and try it again to get a higher one. So actual credits would not be a valid indicator of students success in terms of progression as they do not tell us whether the student would have been able to get more credits if he/she accepted lower grades, if the student failed and if he/she did not sit the exam at all. For these reasons we model the potential credits as a latent variable and for each student we observe an interval whose lower bound is the actual amount of credits while the upper bound is the amount of credits the student would account for if he/she passed one more exam or did not refuse one. The two equations system is estimated by maximum likelihood under the assumption of joint normality of the two equations' error terms. Starting values for maximum likelihood are derived by a two step procedure that first estimates the probability of dropping out and gives the generalized residuals to be included among the covariates of the interval regression at the second stage in order to control for the correlation across the two equations.

Although modelling two separate equations (Boero, Laureti, Naylor (2005)) leads to consistent estimates of coefficients, potential correlation within the two performance indicators is not taken into account. It is in fact plausible that a student's drop out decision might be influenced by his own success in passing exams and therefore acquiring credits. Even though data do not allow for an identification of such causality (we do not know if the drop-out decision is made before or after having passed any exams), the maximum likelihood method includes the estimation of such correlation coefficient and exploits all the information available on the number of credits acquired by the students. Furthermore, a hypotetical policy maker would also find it useful to have information about characteristics of incoming students who, given the same potential performance in terms of passed exams, still have a significant probability of dropping out. That is, once we control for the student's accademic potential, we may find out what influences the drop out decision beyond the six major categories and therefore identify factors that can be acted on to reduce the drop-out rate. To do so, we calculate the paramenters of the mean of the probability of not drop-
ping out conditional to the student potential performance as functions of the previous estimation. Using administrative data from four faculties of Università Politecnica delle Marche, first we run a simultaneous estimation of the determinants of both the probability of retention and of getting a certain number of credits by maximum likelihood and secondly we try to find the parameters of the mean retention probability conditional to the student's performance in terms of potential credits as a function of the parameters of the previous estimation ${ }^{3}$

The paper is organized as follows: section 2 reviews both traditional and more recent works about the evaluation of students' performance, section 3 outlines the methodology, section 4 shows some descriptive statistics and section 5 reports the estimation results. Section 6 concludes.

## 2 Literature review

To the best of our knowledge, literature on the Italian case focuses on university students performance and drop-out mainly to evaluate if the " $3+2$ " reform, that followed the Bologna declaration, has positively affected them. The case of Italy has been widely discussed as the reform, effective since 2001, had the reduction of both the drop-out rate and graduation time among its primary goals. Common findings are that individual characteristics such as gender, age and prior school background are significant in determining the probability of dropping out and the student performance in terms of passed exams.

Boero, Laureti, Naylor (2005) run two separate estimations for the drop-out probability and the progression rate. They estimate the probability of dropping out with a probit model and the progression rate by a regression on its logistic transformation as it is bounded between zero and one. Results line up with the expected ones but do not take into account correlation within the two indicators.

Bivariate models have been used among the more traditional literature on drop out but only to correct for a selection bias that generates when not considering the decision of enrolling after leaving high school. Di Pietro (2004) implements a bivariate probability model with sample selection to account for the two sequential decisions of enrolling and dropping out and he included family background and labour market condition among the covariates which result to be significant. There are similar findings in Cingano, Cipollone (2007) who use a type II tobit model on survey data to account for both the decision of enrolling and dropping out afterwards. They find out that family and educational background turn out to be determintant for both phenomena.

Several procedures have been applyed to control for students characteristics and isolate the effect of the university reform on drop out and student performance. Bratti, Broccolini, Staffolani (2006) use the propensity score method to evaluate the impact of the reform on student performance as well as D'Hombres (2007) who studies such effects on the drop out and on students status (active vs inactive) instead. Di Pietro and Cutillo (2008) use the Oaxaca decomposition method on three students cohorts to study if the university reform has changed the average predicted conditional probability of dropping out.

Finally Belloc, Maurotti and Petrella (2009) analyse the drop out rate and its determinants performing a generalized linear mixed model and including,

[^1]among the covariates, students performance (divided in four classes) measured by an index based on the exam grades and the number of credits associated with each exam.

Starting from the existing literature, the methodology we propose allows for the joint estimation of the drop out probability and student performance accounting for the correlation across them. Unlike the work of Belloc, Maurotti and Petrella, our model does not include average exams grade as university performance because of the problems that would arise if we considered that the grade we observe is sensitive to endogenous truncation due to the possibility of refusing grades, being rejected (if a student does not pass an exam we do not observe the grade he/she has been rejected with) or not trying the exam at all. Furthermore, it offers the possibility to evaluate what really influences the drop out decision, once we control for those characteristics that influence both drop out and performance.

## 3 Methodology

### 3.1 Model specification

We analyse a system of two latent variables: the first one, $x_{i}^{*}$, is the potential credits a student can acquire during the first year and the second one, $y_{i}^{*}$, is the propensity to enroll into the second year.

$$
\begin{align*}
& x_{i}^{*}=z_{i}^{\prime} \beta+\varepsilon_{i}  \tag{1}\\
& y_{i}^{*}=z_{i}^{\prime} \gamma+v_{i} \tag{2}
\end{align*}
$$

Equation 1 will be referred at as the potential credits equation and 2 as the retention equation, where $z_{i}$ is a set of covariates including individual characteristics and prior school performance (sex, age, high school grade and provenance, region of residence, enrolment year). Key assumption of the model is the joint normality of the error terms $\varepsilon_{i}$ and $v_{i}$ :

$$
\binom{\varepsilon_{i}}{v_{i}} \sim N\left(\binom{0}{0} ;\left(\begin{array}{cc}
\sigma_{\varepsilon}^{2} & \rho \sigma_{\varepsilon} \\
\rho \sigma_{\varepsilon} & 1
\end{array}\right)\right)
$$

Let $x_{i}^{*}$ be normally distributed as the marginal density of error term:

$$
\varepsilon_{i} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)
$$

and $x_{i}$ be observed only as the lower bound, $a_{j}$, of one of the $J$ intervals $x_{i}^{*}$ belongs to. The intervals lower bounds are the credits the student has acquired while the upper bounds, $a_{j+1}$ are the credits the student would have acquired if he passed one more exam.

$$
\begin{array}{ccc}
x_{i}=a_{1} & \text { if } & x_{i}^{*} \in\left(-\infty, a_{2}\right) \\
x_{i}=a_{2} & \text { if } & x_{i}^{*} \in\left[a_{2}, a_{3}\right)
\end{array}
$$

$$
\begin{array}{ccc}
x_{i}=a_{j} & \text { if } & x_{i}^{*} \in\left[a_{j}, a_{j+1}\right) \\
& \vdots \\
x_{i}=a_{J-1} & \text { if } & x_{i}^{*} \in\left[a_{J-1}, a_{J}\right) \\
x_{i}=a_{J} & \text { if } & x_{i}^{*} \in\left[a_{J},+\infty\right)
\end{array}
$$

The propensity not to drop out $y_{i}^{*}$ has also a normal distribution given by:

$$
v_{i} \sim N(0,1)
$$

and we observe a dichotomous variable $y_{i}$ according to the following rule:

$$
\begin{array}{lll}
y_{i}=1 & \text { if } & y_{i}^{*}>0 \\
y_{i}=0 & \text { if } & y_{i}^{*} \leq 0
\end{array}
$$

that is $y_{i}$ is equal to 1 if the student stays and equal to 0 if he drops out. So the joint normal distribution of the two latent variables is:

$$
\binom{x_{i}^{*}}{y_{i}^{*}} \sim N\left(\binom{z_{i}^{\prime} \beta}{w_{i}^{\prime} \gamma} ;\left(\begin{array}{cc}
\sigma_{\varepsilon}^{2} & \rho \sigma_{\varepsilon}  \tag{3}\\
\rho \sigma_{\varepsilon} & 1
\end{array}\right)\right)
$$

We want to estimate jointly the parameters of both the potential credits and the retention equations, along with $\sigma_{\varepsilon}$ and the correlation coefficient $\rho$ :

$$
\theta=\left(\begin{array}{c}
\beta \\
\gamma \\
\sigma_{\varepsilon} \\
\rho
\end{array}\right)
$$

We simultaneously estimate all the parameters with maximum likelihood that uses as starting values coefficients estimated by a two-step procedure.

### 3.2 Two-step

The two-step estimation is carried out as in Rivers and Vuong (1988). We use equation (2) as a "selection equation". Therefore we consider the distribution of the error term $\varepsilon_{i}$ conditional to $v_{i}$ :

$$
\varepsilon_{i} \mid v_{i} \sim N\left(\rho \sigma_{\varepsilon} v_{i} ; \quad \sigma_{\varepsilon}^{2}\left(1-\rho^{2}\right)\right)
$$

so that we can write $\varepsilon_{i}$ as its best linear predictor plus an error term that follows a standard normal distribution

$$
\begin{gathered}
\varepsilon_{i}=\rho \sigma_{\varepsilon} v_{i}+\eta_{i} \\
\eta_{i} \sim N(0 ; 1)
\end{gathered}
$$

that we can substitute in equation (1) obtaining:

$$
x_{i}^{*}=z_{i}^{\prime} \beta+\rho \sigma_{\varepsilon} v_{i}+\eta_{i}
$$

Thus we run the two-step procedure in the following manner: firstly we estimate a probit model for the retention equation, (2), and we compute its generalized residuals $\hat{v}_{i}$ (inverse Mill's ratio), secondly we substitute them in the potential credits equation, (1), whose parameters can now be estimated with an interval regression:

$$
x_{i}=z_{i}^{\prime} \beta+\rho \sigma_{\varepsilon} \hat{v}_{i}+\eta_{i}
$$

Finally $\hat{\rho}$ can be derived as the ratio between the coefficient of the predicted generalized residuals and $\hat{\sigma_{\varepsilon}}$.

The two-step estimation solely is much simpler to implement. However, the coefficients covariance matrix estimator is not consistent unless it is adjusted as shown in Wooldridge (2002) and this could, therefore, result in misleading diagnostics. The covariance matrix estimator is consistent only where the two error terms are independent, being the two-step procedure simply the estimation of two separate equations. Furthermore, a valid test for independece is verifying that the t-ratio for $\widehat{\rho \sigma_{\epsilon}}$ in the second step is $\mid \mathrm{t}-$ ratio $\mid<2$.

### 3.3 Maximum likelihood

Once we ran the two-step procedure, we use its estimated coefficients as starting values to implement a maximum likelihood estimation whose likelihood function is built as follows. Let us first introduce the notation:

$$
X_{j}=\frac{a_{j}-z_{i}^{\prime} \beta}{\sigma_{\varepsilon}} \quad X_{j+1}=\frac{a_{j+1}-z_{i}^{\prime} \beta}{\sigma_{\varepsilon}} \quad Y=-w_{i}^{\prime} \gamma
$$

where $X_{j}$ and $X_{j+1}$ are the standarized values of, respectively, the lower and the higher bound of interval $j$ and Y is the standardized value of $y_{i}$ when equal to zero. We first write the credits interval marginal probability as:
$\operatorname{Pr}\left(X_{j}\right)=\left\{\begin{array}{l}\operatorname{Pr}\left(-\infty<x_{i}^{*}<a_{2}\right)=A_{1}=\Phi\left(X_{2}\right) \quad j=1 \\ \operatorname{Pr}\left(a_{j} \leq x_{i}^{*}<a_{j+1}\right)=A_{2}=\Phi\left(X_{j+1}\right)-\Phi\left(X_{j}\right) \quad j=2, \ldots, J-1 \\ \operatorname{Pr}\left(a_{J} \leq x_{i}^{*}<+\infty\right)=A_{3}=1-\Phi\left(X_{J}\right) \quad j=J\end{array}\right.$
We can also write the joint probability of being in a certain credit interval and dropping out at the same time, $\operatorname{Pr}\left(X_{j}, y_{i}^{*} \leq 0\right)$, as:
$\operatorname{Pr}\left(X_{j}, y_{i}^{*} \leq 0\right)=\left\{\begin{array}{l}\operatorname{Pr}\left(-\infty<x_{i}^{*}<a_{2}, y_{i}^{*} \leq 0\right)=B_{1}=\Phi_{2}\left(X_{2}, Y, \rho\right) \quad j=1 \\ \operatorname{Pr}\left(a_{j} \leq x_{i}^{*}<a_{j+1}, y_{i}^{*} \leq 0\right)=B_{2}=\Phi_{2}\left(X_{j+1}, Y, \rho\right)+ \\ \\ -\Phi_{2}\left(X_{j}, Y, \rho\right) \quad j=2, \ldots, J-1 \\ \operatorname{Pr}\left(a_{J} \leq x_{i}^{*}<+\infty, y_{i}^{*} \leq 0\right)=B_{3}=\Phi(Y)-\Phi_{2}\left(X_{J}, Y, \rho\right) \quad j=J\end{array}\right.$
while the joint probability of being in a certain interval and not dropping out, $\operatorname{Pr}\left(X_{j}, y_{i}^{*}>0\right)$, can be calculated as the difference beteween (4) and (5):

$$
\operatorname{Pr}\left(X_{j}, y_{i}^{*}>0\right)= \begin{cases}\operatorname{Pr}\left(-\infty<x_{i}^{*}<a_{2}, y_{i}^{*}>0\right)=A_{1}-B_{1} & j=1  \tag{6}\\ \operatorname{Pr}\left(a_{j} \leq x_{i}^{*}<a_{j+1}, y_{i}^{*}>0\right)=A_{2}-B_{2} & j=2, \ldots, J-1 \\ \operatorname{Pr}\left(a_{J} \leq x_{i}^{*}<+\infty, y_{i}^{*}>0\right)=A_{3}-B_{3} & j=J\end{cases}
$$

where $\Phi$ and $\Phi_{2}$ are respectively the univariate and bivariate standard normal cumulative distribution functions.

The likelihood function can be written as:

$$
\begin{equation*}
L\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(X_{j}, y_{i}^{*}>0\right)^{y_{i}} \operatorname{Pr}\left(X_{j}, y_{i}^{*} \leq 0\right)^{\left(1-y_{i}\right)} \tag{7}
\end{equation*}
$$

so the log-likelihood function for observation $i$, the one we are going to maximize, is:

$$
\begin{equation*}
\ell_{i}\left(x_{1}, \ldots, x_{n} ; \theta\right)=y_{i} \ln \left[\operatorname{Pr}\left(X_{j}, y_{i}^{*}>0\right)\right]+\left(1-y_{i}\right) \ln \left[\operatorname{Pr}\left(X_{j}, y_{i}^{*} \leq 0\right)\right] \tag{8}
\end{equation*}
$$

Assuming that all these observations are independent we can sum across observations to get the log-likelihood for the complete sample:

$$
\begin{equation*}
\ell\left(x_{1}, \ldots, x_{n} ; \theta\right)=\sum_{i=1}^{n} y_{i} \ln \left[\operatorname{Pr}\left(X_{j}, y_{i}^{*}>0\right)\right]+\left(1-y_{i}\right) \ln \left[\operatorname{Pr}\left(X_{j}, y_{i}^{*} \leq 0\right)\right] \tag{9}
\end{equation*}
$$

### 3.4 Conditional mean equation

Other than estimating simultaneously all the parameters of the two equations, we can be interested in finding whether there is still a significant probability of dropping out once we controlled for the potential credits. While the methodology proposed above already allows for the estimation of the correlation coefficient $\rho$ between the potential credits and the propensity not to drop out, this result does not explain if the decision of dropping out is influenced by some factors itself other than a poor academic permormance in terms of credits acquired. A futher analysis might give useful information about the drop out decision as we do not know if it occurs before or after having passed any exams, expecially if there are no significant differences between the determinants of the two equations. Using the results of the maximum likelihood estimation and assuming that the two sets of covariates are the same across equations, we combine (1) and (2) to obtain the mean of the propensity not to drop out conditional to the student's potential credits, which we do not observe, and the set of covariates. Given the bivariate normal distribution of the two latent variables (3), the univariate normal distribution of $y_{i}^{*}$ conditional on $x_{i}^{*}$ and the covariates $z_{i}$ can be written as

$$
y_{i}^{*} \left\lvert\, x_{i}^{*} \sim N\left(z_{i}^{\prime} \gamma+\frac{\rho}{\sigma_{\varepsilon}}\left(x_{i}^{*}-z_{i}^{\prime} \beta\right) ; 1-\rho^{2}\right)\right.
$$

so that the conditional mean is

$$
\begin{gather*}
E\left[y_{i}^{*} \mid x_{i}^{*}, z_{i}\right]=z_{i}^{\prime} \gamma+\frac{\rho}{\sigma_{\varepsilon}} x_{i}^{*}-\frac{\rho}{\sigma_{\varepsilon}} z_{i}^{\prime} \beta \\
E\left[y_{i}^{*} \mid x_{i}^{*}, z_{i}\right]=\alpha_{0} x_{i}^{*}+z_{i}^{\prime} \alpha_{1} \tag{10}
\end{gather*}
$$

where

$$
\begin{equation*}
\alpha_{0}=\frac{\rho}{\sigma_{\varepsilon}} \quad \alpha_{1}=\gamma-\frac{\rho}{\sigma_{\varepsilon}} \beta \tag{11}
\end{equation*}
$$

are the coefficient of the potential credits and the vector of coefficients associated with the other covariates respectively. The idea is that when the results
confirm the more traditional empirical evidence, according to which academic success diminishes for older students and for poorer school backgrounds, coefficients associated with the covariates are very similar across the two equations. However, with a high value of $\rho$, they may offset each other when we consider the determinants of the probability of dropping out conditional to the academic potential, leading to values of the elements of $\alpha$ to be closer to zero. The parameters of equation (10) might be of some interest when, for example, evaluating entry tests of incoming students. As the correlation coefficient among the two equations tells us nothing about causality, we are in fact able, through this equation, to identify the determinants of a student's propensity not to drop out once we controlled for the potential credits he may achieve. This would tell us that there are factors influencing the drop out decision independently from the performance in terms of credits, and that a hypotetical policy maker should take into account regardless of the entry test results.

## 4 Data set description and algorithm implementation

We use administrative data on enrolments from 1999 to 2006 from the faculty of Agriculture, Economics, Engineering and Sciences of "Università Politecnica delle Marche". We consider enrolments into the first year of the first lever degree (three year) after 2001 enrolments into the old type of graduation course (four or five years) for years 1999 and 2000. Table 1 reports the descriptions of the variables used in the estimation.

We use as covariates $(z)$ individual and background characteristics such as gender ( 1 if male), age at the time of enrolment and its square transformation, high school provenance (we take sciences as benchmark, and then we have classical, languages, technical, pedagogical, vocational and other schools) and the deviation of high school grade from the average grade in the same type of high school attended. We also control for the average peer effect (the average high school grade of students who are attending the same course) and whether the students is enrolled into a peripheral faculty. We include students' geographical provenance (our benchmark is students who live in the same city as the university, then we have the same province, same region, other Italian regions, and other countries) and enrolment year. Descriptive statistics are reported in the appendix.

As already outlined, the two latent variables are the potential credits and the propensity not to drop out of university, so that the system is:

$$
\begin{align*}
& \text { redits }_{i}^{*}=z_{i}^{\prime} \beta+\varepsilon_{i}  \tag{12}\\
& \text { retent }_{i}^{*}=w_{i}^{\prime} \gamma+v_{i} \tag{13}
\end{align*}
$$

Being the number of potential credits a latent variable, we consider the credits acquired by each student as grouped data, with the lower bound (credits1) as the number of credits the student has acquired during the first year, and the upper bound (credits 2 ) as the lower one plus a minimun amount of ects credits the student would have acquired if he passed one more exam or accepted one more grade. For students enrolled in 1999 and 2000 credits have been imputed

Table 1: Variables Description

| Variables | Description |
| :---: | :---: |
| Dependent Variables |  |
| ects1 | lower bound: number of credits acquired during the first year |
| ects2 | upper bound: lower bound plus a minimun amount of credits (different by courses) |
| retent | $=1$ if the student enrolls into the second year |
| Exogenous Variables |  |
| Gender | $=1$ if male |
| Age | age at the time of enrolment/10 |
| Age2 | square of: age at the time of enrolment/10 |
| High School Grade | from 60 to 100, according to the Italian high school grading system |
| H.S.Grade: mean dev. | high school grade mean deviation (by school type) |
| Av. Peer Effect | average high school grade of students who are attending the same course |
| Sciences | $=1$ if Scientific Lyceum, benchmark |
| Classical | $=1$ if Classical Lyceum |
| Languages | $=1$ if Languages Lyceum |
| Technical | $=1$ if Technical Institutes |
| Pedagogical | $=1$ if Pedagogical Insitute |
| Vocational | $=1$ if Professional Institutes |
| Other | $=1$ if Other Intitutes |
| Site: peripheral | $=1$ if the faculty is not the city of Ancona |
| Ancona | $=1$ if the student lives in the city of Ancona, benchmark |
| Prov. Ancona | $=1$ if the student lives in the province of Ancona |
| Marche | $=1$ if the student lives in other provinces of Marche |
| Other Regions | $=1$ if the student lives in other regions other than Marche |
| Foreign | $=1$ if the student lives abroad |
| En. Year 1999 | $=1$ if the student enrolled in 1999, benchmark |
| En. Year 2000 | $=1$ if the student enrolled in 2000 |
| En. Year 2001 | $=1$ if the student enrolled in 2001 |
| En. Year 2002 | $=1$ if the student enrolled in 2002 |
| En. Year 2003 | $=1$ if the student enrolled in 2003 |
| En. Year 2004 | $=1$ if the student enrolled in 2004 |
| En. Year 2005 | $=1$ if the student enrolled in 2005 |
| En. Year 2006 | $=1$ if the student enrolled in 2006 |
| N. of observations | 15,476 |

for the same passed exams. As for the retention equation we observe a dummy variable which takes the value 1 if the student enrolls into the second year.

To estimate the parameters of the conditional mean equation, we have to assume the same set of covariates, (let's say $z_{i}$ ) in both equations (12) and (13) so we can write it as:

$$
\begin{equation*}
\text { mean }_{i}=\alpha_{0} \text { credits }_{i}^{*}+z_{i}^{\prime} \alpha_{1} \tag{14}
\end{equation*}
$$

where expressions of $\alpha_{0}$ and $\alpha_{1}$ were already shown in equation (11). Values of the parameters in equations (12),(13) and (14) that we want to estimate can all be expressed as funcions of:

$$
\delta=\left\{\begin{array}{l}
\beta \\
\gamma \\
\lambda \\
a
\end{array}\right.
$$

where $\lambda$ and $a$ are parameters transformations discusse in the appendix.

## 5 Results

Estimation results are reported in the appendix separately for the three equations (12), (13) and (14), and for the estimates $\hat{\sigma_{\varepsilon}}$ and $\hat{\rho}$. Results are presented for each of the four faculties (Agriculture, Economics, Engineering, Sciences).

At a first glance estimates do no seem to be strongly different neither within equations (12) and (13), nor between faculties. Results also comply with most empirical findings in the existing literature. We observe that, only for the faculty of economics, gender turns out to have a significant impact in both equations as male students are less productive and less likely to continue their studies than female ones. A decreasing negative effect of age appears in both equations and faculties: the older students are when they enrol into the first year the poorer are their academic performance and their probability of retention. However square age allows for such effect to diminish when students enroll after many years they left high school, possibly due to different reasons that brought the latter ones to the enrolment choice. As for high school background, final grades have a positive impact on the probability of success for students of all faculties while the average peer effect turns out to have negative one for the faculties of agriculture and sciences. The impacts of high school types attended almost do not differ within equations for each faculty. For the faculty of agriculture (Table 6 and Table 7) students who come from a technical, a vocational or form the Other type of institutes have a lower probability of succeding in the first year than those who come from a scientific lyceum. In the faculty of economics and engineering all students perform worse than those who came from a scientific lyceum except those who came from a classical one that in the faculty of economics behave the same (Tables 10, 11, 14, and 15). As for the faculty of sciences (Tables 18 and 19), students form scientific and languages schools have a higher probability of success than the other students. Enrolling into a peripheral site has a positive effect on students' success for economics and engineering but not for agriculture. The impact of geographical provenance is quite different across faculties. Students of the faculty of agriculture perform worse than
students who live in the city of Ancona only if they live in its province. In the faculty of economics, students who come from other provinces of region Marche and from other countries have a higher probability of retention while students who come from other regions get less credits, all with respect to those who live in Ancona. While provenance does not make any difference in the probability of retention, for students of the faculty of engineering living in the province of Ancona and in the other provinces or the region of Marche has respectively a lower and a higher impact on progression than living in Ancona. Students of the faculty of sciences have all a higher probability of succeding if they do not live in the city of Ancona. The reform introduced in 2001 seems to have boosted students' performance in terms of potential credits with respect to year 1999 producing a constant effect over the years. It also has constantly increased the probability of retention for the faculties of economics and engineering and only until 2004 for the faculty of sciences. It appears that the reform had no effect on the probability of retention for the faculty of agriculture, other than lower it in 2006 with respect to year 1999.

We also report the estimation results for equation (14) for the four faculties (Tables $9,13,17$ and 21 ). The coefficient $\alpha_{0}$ is the effect of the unobserved potential credits, which we may consider a proxy for student's ability, on the probability of retention. Through these results we want to investigate whether characteristics such as personal, high school related and geographical still have a significant effect on the probability of retention once we control for student's ability. Considering the same amount of potential credits, students' gender and age no longer affects the probability of retention except for the faculty of engineering. It is, on the contrary, particularly interesting the negative signs of coefficients associated with high school grades, that is, relatively to the prior school experience, students who performed better in high school, when facing poor academic results, are more likely to drop out of university. Only students who attendend a technical or vocational high school in the faculty of economics and students who come from other insitutes in the faculty of sciences have still a lower probability of retention than those who come from a scientific lyceum. Being enrolled only into a peripheral site of the faculty of engineering makes it less likely to drop out and geographical provenance still influences the probability of retention only for the faculty of economics: considering students' ability ceteris paribus, not living in the city of Ancona has a positive effect on the probability of continuing university studies. Furthermore, we find out that given the same potential credits, students who enrolled before the university reform were less likely to drop out than those who did after. This phenomenon could be due to the deterioration of high school background brought by the reform (Bratti, Broccolini, Staffolani (2006)) as a consenquence of the shortening of courses' legal lenght. This innovation made it possible for high school leavers, who would not have countiued their studies for other four or five years, to get a first level degree after only three years of university studies. This lead to a higher number of enrolled students with a weaker prior school performance that could have boosted drop out afterwards. It is also not unrealistic to think the reform has made it less difficult for students to modify their university choice after the first year as credits already acquired are transferable to the new academic carrier.

## 6 Conclusions

The paper has developed an alternative empirical methodology to estimate the determinants of university students' success considering their first year performance, in terms of both potential credits thay may acquire passing exams during the first year and probability of retention. Using administrative data on four faculties of "Università Politecnica delle Marche", we estimated the parameters of a bivariate latent variable system of two equations by maximum likelihood that, unlike a simpler two-step procedure, gives consistent result in presence of a strong correlation between the two variables. A further transformations of the estimated parameters allows for an analysis where we attempt to find determinants of the drop out probability once we controlled for the students' potential credits which we may consider as a proxy for students' ability. While the results obtained with the estimation of the bivariate latent variable system comply with most empirical findings in the existing literature, we find out that potential credits are alone a quite good predictor of the probability of retention that is now only sensitive to the prior school performance and to the introduction of the reform in 2001. With ability ceteris paribus a higher performance in high school makes it more likely to drop out, prossibly to change one's own study path, and it is reasonable to think that the effect of the deterioration of high school backgrounds due to a higher number of enrolments after 2001, has neutralized the positive effect of the reform itself on the probability of retention. Hypotetically, this last equation would also reveal some useful information to a policy maker who would have to choose which students to enroll. If an entry test said something about the academic potential success of an incoming student and its result were likely in line with the student's prior school performance, our last findings would correct such result that could, in some cases, be misleading.

## References

Bhat C. R., (1994), "Imputing a continuous income variable from grouped and missing income observations", Economic Letters 46 (1994) 311-319

Boero G., Laureti T., Naylor R. (2005), " An econometric analysis of student withdrawal and progression in post reform Italian universities", CRENOS Working Papers, no. 1048

Bratti M., Broccolini C., Staffolani S. (2006), " Is " $3+2$ " equal to four? On the effects of university reform in Italy", Università Politecnica delle Marche, Dipartimento di economia Working Papers 251

Bratti M., Broccolini C., Staffolani S. (2010), "Is " $3+2$ " equal to four? Higher education reform, student's time allocation and academic performance in Italy: Evidence from a Faculty of Economics ", Rivista italiana degli economisti, forthcoming

Cappellari, L., Lucifora, C. (2008), "The Bologna Process and the College Enrolment Decisions", IZA Discussion Paper No. 3444, IZA, Bonn.

Cipollone, P. and Cingano, F. (2007), "University Drop-out - The case of Italy", Banca d'Italia Temi di discussione (Working Paper) No. 626

D'Hombres, B.(2007), "The impact of university reforms on dropout rates and students' status: Evidence from Italy", JRC Scentific and Technical Reports, European Commission

Davidson, R. and MacKinnon, J. G. (2004), Econometric Theory and Methods, New York: Oxford University Press.

Di Pietro, G.(2004), "The determinants of university dropout in Italy: A bivariate probability model with sample selection", Applied Economics Letters, 11(3), 187-191

Di Pietro, G., Cutillo, A. (2008), "Degree flexibility and university dropout: The Italian Experience", Economics of Education review, 27(5), 546-555

Heckman J.J. (1976), "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for such Models", Annals of Economics and Social Measurement 5, 475-492

Heckman J.J. (1979), "Sample Selection Bias as a Specification Error", Econometrica 47, 153-161

OECD (2009), "Education at a glance", OECD indicators.
Rivers D., Q.H. Vuong (1988), "Limited information estimators and exogeneity tests for simultaneous probit models", Journal of Econometrics 39, 347-366

Rosenbaum, S. (1961), "Moments of a truncated bivariate normal distribution" Journal of the Royal Statistic Society, Series B, 23, 223-229

Stern, S. (1991), "Imputing a continuous income variable from a bracketed income variable with special attention to missing observations", Economic Letters 37, 287-291

Stewart, M.B., (1983), "On least squares estimation when the dependent variable is grouped", Review of Economic Studies, 737-753

Wooldridge J. M. (2002), Econometric Analysis of Cross Section and Panel Data, Cambridge, Massachussets, MIT Press

## Appendix

## Descriptive Statistics

Table 2: Variables Descriptive Statistics (mean) by Faculty

| Variables | Agriculture |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Dependent Variables |  | Economics | Engineering | Sciences |
| Retention Rate | 0.76 | 0.83 | 0.74 |  |
| Average credits | 24.84 | 31.26 | 24.97 | 13.94 |
| Exogenous Variables |  |  | 0.59 |  |
| Gender | 0.65 | 0.45 | 0.83 | 0.36 |
| Age | 20.17 | 19.83 | 19.80 | 19.93 |
| Age2 | 1.42 | 1.41 | 1.40 | 1.41 |
| High School Grade | 78.60 | 81.92 | 83.82 | 79.32 |
| Av. Peer Effect | 78.48 | 81.65 | 83.68 | 79.36 |
| Sciences | 0.32 | 0.29 | 0.39 | 0.49 |
| Classical | 0.05 | 0.05 | 0.04 | 0.13 |
| Languages | 0.03 | 0.04 | 0.01 | 0.05 |
| Technical | 0.45 | 0.50 | 0.50 | 0.19 |
| Pedagogical | 0.03 | 0.04 | 0.01 | 0.07 |
| Vocational | 0.12 | 0.07 | 0.05 | 0.06 |
| Other | 0.01 | 0.00 | 0.01 | 0.01 |
| Site: peripheral | 0.01 | 0.13 | 0.13 | 0.00 |
| Ancona | 0.17 | 0.16 | 0.08 | 0.13 |
| Prov. Ancona | 0.36 | 0.35 | 0.24 | 0.33 |
| Marche | 0.34 | 0.39 | 0.40 | 0.31 |
| Other Regions | 0.12 | 0.08 | 0.27 | 0.22 |
| Foreign | 0.00 | 0.02 | 0.01 | 0.01 |
| En. Year 1999 | 0.07 | 0.08 | 0.09 | 0.09 |
| En. Year 2000 | 0.08 | 0.09 | 0.09 | 0.10 |
| En. Year 2001 | 0.12 | 0.13 | 0.13 | 0.09 |
| En. Year 2002 | 0.10 | 0.14 | 0.14 | 0.12 |
| En. Year 2003 | 0.12 | 0.14 | 0.14 | 0.15 |
| En. Year 2004 | 0.17 | 0.15 | 0.14 | 0.14 |
| En. Year 2005 | 0.18 | 0.13 | 0.13 | 0.13 |
| En. Year 2006 | 046. | 0.13 | 0.17 |  |
| N. of observations | 109. | 7272. | 1859. |  |
|  |  |  |  |  |

Table 3: Retention Rate Specifics

| Variables | Agriculture |  | Economics | Engineering |
| :--- | :--- | :---: | :---: | :---: |
| Sciences |  |  |  |  |
| Male | 0.75 | 0.79 | 0.72 | 0.54 |
| Female | 0.77 | 0.85 | 0.81 | 0.62 |
| Age 19-21 | 0.79 | 0.85 | 0.77 | 0.61 |
| Age 22-30 | 0.57 | 0.54 | 0.33 | 0.45 |
| Age over 30 | 0.30 | 0.53 | 0.31 | 0.43 |
| High School Grade 60-70 | 0.62 | 0.70 | 0.54 | 0.46 |
| High School Grade 70-80 | 0.78 | 0.81 | 0.68 | 0.58 |
| High School Grade 80-90 | 0.82 | 0.88 | 0.78 | 0.65 |
| High School Grade 90-100 | 0.88 | 0.90 | 0.85 | 0.73 |
| Average Peer Effect 60-80 | 0.77 | 0.76 | 0.60 | 0.62 |
| Average Peer Effect 80-90 | 0.73 | 0.84 | 0.76 | 0.58 |
| Scientific | 0.83 | 0.89 | 0.85 | 0.68 |
| Classical | 0.81 | 0.85 | 0.76 | 0.64 |
| Languages | 0.83 | 0.79 | 0.70 | 0.62 |
| Technical | 0.76 | 0.81 | 0.68 | 0.46 |
| Pedagogical | 0.69 | 0.82 | 0.62 | 0.51 |
| Vocational | 0.55 | 0.67 | 0.44 | 0.36 |
| Other | 0.50 | 0.80 | 0.46 | 0.39 |
| Site: peripheral | 0.57 | 0.77 | 0.69 | .- |
| Site: Ancona | 0.76 | 0.83 | 0.75 | 0.59 |
| Ancona | 0.76 | 0.79 | 0.74 | 0.53 |
| Prov Ancona | 0.70 | 0.83 | 0.73 | 0.61 |
| Marche | 0.82 | 0.85 | 0.75 | 0.56 |
| Other Regions | 0.76 | 0.79 | 0.72 | 0.64 |
| Foreign | .- | 0.74 | 0.58 | 0.63 |
| En Year 1999 | 0.86 | 0.87 | 0.77 | 0.59 |
| En Year 2000 | 0.79 | 0.84 | 0.76 | 0.67 |
| En Year 2001 | 0.69 | 0.85 | 0.75 | 0.63 |
| En Year 2002 | 0.75 | 0.83 | 0.76 | 0.68 |
| En Year 2003 | 0.81 | 0.85 | 0.76 | 0.67 |
| En Year 2004 | 0.74 | 0.78 | 0.68 | 0.61 |
| En Year 2005 | 0.76 | 0.82 | 0.75 | 0.47 |
| En Year 2006 | 0.73 | 0.79 | 0.70 | 0.48 |
|  |  |  |  |  |

Table 4: Credits specifics for students who drop out, by Faculty

| Variables | Agriculture E |  | Economics |  | Sciences |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Male | 3.51 | 4.93 | 3.29 | 2.30 |  |
| Female | 4.88 | 5.21 | 4.22 | 3.49 |  |
| Age 19-21 | 4.62 | 5.97 | 3.82 | 3.25 |  |
| Age 22-30 | 2.00 | 1.38 | 1.91 | 1.26 |  |
| Age over 30 | 0.81 | 2.06 | 0.73 | 0.62 |  |
| High School Grade 60-70 | 2.83 | 3.63 | 2.08 | 1.41 |  |
| High School Grade 70-80 | 5.52 | 5.36 | 2.99 | 2.40 |  |
| High School Grade 80-90 | 3.32 | 5.34 | 3.81 | 3.68 |  |
| High School Grade 90-100 | 6.55 | 7.81 | 5.74 | 7.40 |  |
| Av Peer Effect 60-80 | 3.87 | 4.36 | 2.82 | 1.83 |  |
| Av Peer Effect 80-90 | 4.22 | 5.34 | 3.55 | 3.43 |  |
| Scientific | 6.57 | 6.28 | 4.80 | 3.92 |  |
| Classical | 5.60 | 8.22 | 2.49 | 4.96 |  |
| Languages | 1.20 | 6.29 | 6.68 | 1.97 |  |
| Technical | 3.20 | 4.92 | 3.22 | 1.66 |  |
| Pedagogical | 4.45 | 3.22 | 3.93 | 3.15 |  |
| Vocational | 2.60 | 3.31 | 1.56 | 1.05 |  |
| Other | 8.67 | 0.00 | 2.93 | 3.00 |  |
| Site: peripheral | 0.00 | 4.54 | 2.98 | 1.58 |  |
| Site: Ancona | 4.07 | 5.17 | 3.48 | -. |  |
| Ancona | 3.98 | 5.02 | 2.68 | 2.63 |  |
| Prov Ancona | 3.93 | 5.32 | 3.41 | 2.11 |  |
| Marche | 2.46 | 5.26 | 3.74 | 3.41 |  |
| Other Regions | 7.27 | 3.83 | 3.10 | 4.04 |  |
| Foreign | -. | 3.73 | 4.47 | 3.43 |  |
| En Year 1999 | 0.91 | 2.35 | 0.86 | 1.14 |  |
| En Year 2000 | 0.28 | 1.43 | 1.25 | 2.85 |  |
| En Year 2001 | 0.71 | 4.46 | 2.75 | 1.30 |  |
| En Year 2002 | 6.48 | 3.51 | 3.23 | 0.68 |  |
| En Year 2003 | 3.35 | 5.26 | 2.51 | 1.06 |  |
| En Year 2004 | 3.06 | 5.62 | 4.59 | 4.38 |  |
| En Year 2005 | 5.81 | 8.05 | 5.69 | 4.91 |  |
| En Year 2006 | 7.13 | 6.27 | 4.09 | 4.34 |  |

Table 5: Credits specifics for students who enroll into the second year, by Faculty

| Variables | Agriculture |  | Economics | Engineering |
| :--- | ---: | :---: | :---: | :---: |
| Sciences |  |  |  |  |
| Male | 30.87 | 34.35 | 31.82 | 19.88 |
| Female | 32.67 | 38.58 | 36.29 | 22.22 |
| Age 19-21 | 32.16 | 37.36 | 33.09 | 21.69 |
| Age 22-30 | 24.04 | 26.59 | 20.83 | 21.02 |
| Age over 30 | 13.44 | 23.34 | 13.33 | 10.00 |
| High School Grade 60-70 | 23.35 | 27.39 | 20.80 | 14.40 |
| High School Grade 70-80 | 29.75 | 33.99 | 26.92 | 20.01 |
| High School Grade 80-90 | 34.44 | 38.30 | 31.86 | 22.74 |
| High School Grade 90-100 | 39.75 | 43.46 | 39.84 | 27.39 |
| Average Peer Effect 60-80 | 31.32 | 34.85 | 34.86 | 22.66 |
| Average Peer Effect 80-90 | 32.05 | 37.24 | 32.37 | 20.94 |
| Scientific | 32.53 | 37.00 | 35.49 | 23.47 |
| Classical | 30.56 | 36.27 | 28.64 | 18.48 |
| Languages | 34.80 | 36.06 | 29.87 | 23.42 |
| Technical | 32.20 | 37.58 | 30.89 | 18.68 |
| Pedagogical | 31.83 | 36.54 | 25.40 | 18.29 |
| Vocational | 23.74 | 30.33 | 25.14 | 16.21 |
| Other | 10.33 | 28.85 | 24.75 | 20.43 |
| Site: peripheral | 31.88 | 36.64 | 36.20 | - |
| Site: Ancona | 31.51 | 36.79 | 32.13 | 21.13 |
| Ancona | 32.73 | 36.23 | 32.52 | 19.63 |
| Prov Ancona | 30.68 | 36.09 | 33.23 | 21.56 |
| Marche | 31.65 | 38.43 | 33.73 | 20.60 |
| Other Regions | 31.69 | 33.26 | 30.66 | 23.34 |
| Foreign | .- | 31.06 | 25.95 | 19.67 |
| En Year 1999 | 13.97 | 21.18 | 13.44 | 17.43 |
| En Year 2000 | 8.23 | 20.11 | 14.29 | 25.13 |
| En Year 2001 | 34.58 | 37.03 | 35.78 | 17.98 |
| En Year 2002 | 39.84 | 41.46 | 38.21 | 16.97 |
| En Year 2003 | 33.98 | 40.29 | 37.75 | 16.28 |
| En Year 2004 | 33.41 | 40.96 | 37.19 | 23.01 |
| En Year 2005 | 35.07 | 40.11 | 37.49 | 25.94 |
| En Year 2006 | 38.16 | 41.43 | 35.61 | 29.54 |
|  |  |  |  |  |

## First partial derivatives

Given the additional parameters as transformations of $\sigma_{\varepsilon}$ and $\rho$ and the probabilities $A_{s}$ and $B_{s}$

$$
\begin{gathered}
a=\operatorname{atanh}(\rho) \quad \lambda=\ln \left(\sigma_{\varepsilon}\right) \\
A_{s}=\operatorname{Pr}\left(X_{j}\right) \quad B_{s}=\operatorname{Pr}\left(X_{j}, y_{i}^{*} \leq 0\right) \quad s=1,2,3
\end{gathered}
$$

the first partial derivatives of the log-likelihood function are:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \beta} & =y_{i} \frac{1}{A_{s}-B_{s}} \frac{\partial\left(A_{s}-B_{s}\right)}{\partial X} \frac{\partial X}{\partial \beta}+\left(1-y_{i}\right) \frac{1}{B_{s}} \frac{\partial\left(B_{s}\right)}{\partial X} \frac{\partial X}{\partial \beta} \\
\frac{\partial \ell}{\partial \gamma} & =y_{i} \frac{1}{A_{s}-B_{s}} \frac{\partial\left(A_{s}-B_{s}\right)}{\partial Y} \frac{\partial Y}{\partial \gamma}+\left(1-y_{i}\right) \frac{1}{B_{s}} \frac{\partial\left(B_{s}\right)}{\partial Y} \frac{\partial Y}{\partial \gamma} \\
\frac{\partial \ell}{\partial \lambda} & =y_{i} \frac{1}{A_{s}-B_{s}} \frac{\partial\left(A_{s}-B_{s}\right)}{\partial \sigma_{\varepsilon}} \frac{\partial \sigma_{\varepsilon}}{\partial \lambda}+\left(1-y_{i}\right) \frac{1}{B_{s}} \frac{\partial\left(B_{s}\right)}{\partial \sigma_{\varepsilon}} \frac{\partial \sigma_{\varepsilon}}{\partial \lambda} \\
\frac{\partial \ell}{\partial a} & =y_{i} \frac{1}{A_{s}-B_{s}} \frac{\partial\left(A_{s}-B_{s}\right)}{\partial a}+\left(1-y_{i}\right) \frac{1}{B_{s}} \frac{\partial\left(B_{s}\right)}{\partial a}
\end{aligned}
$$

where:

$$
\frac{\partial\left(B_{s}\right)}{\partial X}=\left\{\begin{array}{l}
\frac{\partial\left(B_{1}\right)}{\partial X}=\varphi\left(X_{2}\right) \Phi\left(c_{a} Y-s_{a} X\right) \quad j=1 \\
\frac{\partial\left(B_{2}\right)}{\partial X}=\varphi\left(X_{j+1}\right) \Phi\left(c_{a} Y-s_{a} X_{j+1}\right)-\varphi\left(X_{j}\right) \Phi\left(c_{a} Y-s_{a} X_{j}\right) \quad j=2, \ldots, J-1 \\
\frac{\partial\left(B_{3}\right)}{\partial X}=-\varphi\left(X_{J}\right) \Phi\left(c_{a} Y-s_{a} X_{J}\right) \quad j=J
\end{array}\right.
$$

$$
\frac{\partial\left(A_{s}-B_{s}\right)}{\partial X}=\left\{\begin{array}{l}
\frac{\partial\left(A_{1}-B_{1}\right)}{\partial X}=\varphi\left(X_{2}\right)-\frac{\partial\left(B_{1}\right)}{\partial X} \quad j=1 \\
\frac{\partial\left(A_{2}-B_{2}\right)}{\partial X}=\varphi\left(X_{j+1}\right)-\varphi\left(X_{j}\right)-\frac{\partial\left(B_{2}\right)}{\partial X} \quad j=2, \ldots, J-1 \\
\frac{\partial\left(A_{3}-B_{3}\right)}{\partial X}=-\varphi\left(X_{J}\right)-\frac{\partial\left(B_{3}\right)}{\partial X} \quad j=J
\end{array}\right.
$$

$$
\frac{\partial\left(B_{s}\right)}{\partial Y}=\left\{\begin{array}{l}
\frac{\partial\left(B_{1}\right)}{\partial Y}=\varphi(Y) \Phi\left(c_{a} X_{2}-s_{a} Y\right) \quad j=1 \\
\frac{\partial\left(B_{2}\right)}{\partial Y}=\varphi(Y) \Phi\left(c_{a} X_{j+1}-s_{a} Y\right)-\varphi(Y) \Phi\left(c_{a} X_{j}-s_{a} Y\right) \quad j=2, \ldots, J-1 \\
\frac{\partial\left(B_{3}\right)}{\partial Y}=\varphi(Y)-\varphi(Y) \Phi\left(c_{a} X_{J}-s_{a} Y\right) \quad j=J
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{\partial\left(A_{s}-B_{s}\right)}{\partial Y}= \begin{cases}\frac{\partial\left(A_{1}-B_{1}\right)}{\partial Y}=-\frac{\partial\left(B_{1}\right)}{\partial Y} & j=1 \\
\frac{\partial\left(A_{2}-B_{2}\right)}{\partial Y}=-\frac{\partial\left(B_{2}\right)}{\partial Y} & j=2, \ldots, J-1 \\
\frac{\partial\left(A_{3}-B_{3}\right)}{\partial Y}=-\frac{\partial\left(B_{3}\right)}{\partial Y} & j=J\end{cases} \\
& \frac{\partial\left(B_{s}\right)}{\partial \sigma_{\varepsilon}}=\left\{\begin{array}{l}
\frac{\partial\left(B_{1}\right)}{\partial \sigma_{\varepsilon}}=\frac{\partial\left(B_{1}\right)}{\partial X_{2}} \frac{\partial X_{2}}{\partial \sigma_{\varepsilon}} \quad j=1 \\
\frac{\partial\left(B_{2}\right)}{\partial \sigma_{\varepsilon}}=\varphi\left(X_{j+1}\right) \Phi\left(c_{a} Y-s_{a} X_{j+1}\right) \frac{\partial X_{j+1}}{\partial \sigma_{\varepsilon}}-\varphi\left(X_{j}\right) \Phi\left(c_{a} Y-s_{a} X_{j}\right) \frac{\partial X_{j}}{\partial \sigma_{\varepsilon}} \quad j=2, \ldots, J-1 \\
\frac{\partial\left(B_{3}\right)}{\partial \sigma_{\varepsilon}}=\frac{\partial\left(B_{3}\right)}{\partial X_{J}} \frac{\partial X_{J}}{\partial \sigma_{\varepsilon}} \quad j=J
\end{array}\right. \\
& \frac{\partial\left(A_{s}-B_{s}\right)}{\partial \sigma_{\varepsilon}}=\left\{\begin{aligned}
\frac{\partial\left(A_{1}-B_{1}\right)}{\partial \sigma_{\varepsilon}}= & {\left[\varphi\left(X_{2}\right)-\frac{\partial\left(B_{1}\right)}{\partial X_{2}}\right] \frac{\partial X_{2}}{\partial \sigma_{\varepsilon}} \quad j=1 } \\
\frac{\partial\left(A_{2}-B_{2}\right)}{\partial \sigma_{e}}= & \varphi\left(X_{j+1}\right)\left(1-\Phi\left(c_{a} Y-s_{a} X_{j+1}\right)\right) \frac{\partial X_{j+1}}{\partial \sigma_{\varepsilon}}+ \\
& +\varphi\left(X_{j}\right)\left(1-\Phi\left(c_{a} Y-s_{a} X_{j}\right)\right) \frac{\partial X_{j}}{\partial \sigma_{\varepsilon}} \quad j=2, \ldots, J-1
\end{aligned}\right. \\
& \frac{\partial\left(B_{s}\right)}{\partial a}=\left\{\begin{array}{l}
\frac{\partial\left(B_{1}\right)}{\partial a}=\frac{1}{c_{a}} \varphi_{2}\left(X_{2}, Y, a\right) \quad j=1 \\
\frac{\partial\left(B_{2}\right)}{\partial a}=\frac{1}{c_{a}}\left[\varphi_{2}\left(X_{j+1}, Y, a\right)-\varphi_{2}\left(X_{j}, Y, a\right)\right] \quad j=2, \ldots, J-1 \\
\frac{\partial\left(B_{3}\right)}{\partial a}=-\frac{1}{c_{a}} \varphi_{2}\left(X_{j}, Y, a\right) \quad j=J
\end{array}\right. \\
& \frac{\partial\left(A_{s}-B_{s}\right)}{\partial a}= \begin{cases}\frac{\partial\left(A_{1}-B_{1}\right)}{\partial a}=-\frac{\partial\left(B_{1}\right)}{\partial a} & j=1 \\
\frac{\partial\left(A_{2}-B_{2}\right)}{\partial a}=-\frac{\partial\left(B_{2}\right)}{\partial a} & j=2, \ldots, J-1 \\
\frac{\partial\left(A_{3}-B_{3}\right)}{\partial a}=-\frac{\partial\left(B_{3}\right)}{\partial a} & j=J\end{cases} \\
& \frac{\partial X_{j}}{\partial \beta}=\frac{\partial\left(\frac{a_{j}-z_{i}^{\prime} \beta}{\sigma_{\varepsilon}}\right)}{\partial \beta}=\left(-\frac{1}{\sigma_{\varepsilon}}\right) z_{i}^{\prime} \\
& \frac{\partial Y}{\partial \gamma}=\frac{\partial\left(-w_{i}^{\prime} \gamma\right)}{\partial \gamma}=-w_{i}^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial X_{j}}{\partial \sigma_{\varepsilon}}=\frac{\partial\left(\frac{a_{j}-z_{i}^{\prime} \beta}{\sigma_{\varepsilon}}\right)}{\partial \sigma_{\varepsilon}}=-\frac{a_{j}-z_{i}^{\prime} \beta}{\sigma_{\varepsilon}^{2}} \\
\frac{\partial \sigma_{\varepsilon}}{\partial \lambda}=e^{\lambda}
\end{gathered}
$$

## Estimation Procedure

We run the estimation in Gretl 1.8 .7 by calling the function doestimation, which we wrote to implement the whole procedure. The fuction takes as arguments the dependent variables, ects 1 ects 2 and retent, and the two lists of covariates, $z$ and $w$. All the functions we call inside doestimation we have previuosly written. The function proceeds by taking the following steps:

- First it checks for missing observations in values of covariates and restricts the sample. It also transforms lists into matrices.
- It calls the function twostep that runs the two-step procedure and returns a vector: it first estimates a probit model for equation (13), it computes its generalized residuals and stores them in order to include them among the explanatory variables of the interval regression it runs afterwards for equation (12). It now creates the vector of parameters we will use as starting values for the maximum likelihood estimation putting together the estimates of coefficients associated to the covariates with the standard deviation and the correlation coefficient, derived as the ratio between the generalized residuals estimated coefficient and the standard deviation:
- It then calls the function checktheta that corrects values of the standard deviation and the correlation coefficient across iterations so that critical values do not occur.
- The function runs the maximum likelihood estimation using the log-likelihood series created in the function loglik that, among the arguments described above, takes also the coefficient vector produced by the twostep function to use as starting values for the maximization. The log-likelihood function has been calculated as in equation (8). The estimation is carried out using analytical first derivatives (reported in Appendix) created in the function fderiv and called in the maximum likelihood command. For both the log-likelihood and the first derivatives we use transformations of the parameters $\sigma_{\varepsilon}$ and $\rho$ (although values of $\hat{\sigma}$ and $\hat{\rho}$ are reported):

$$
\lambda=\ln \left(\sigma_{\varepsilon}\right) \quad a=\operatorname{atanh}(\rho)
$$

- Coefficient standard errors are calculated via deltha method due to the parameters transformations, as the square root of diagonal elements of the matrix $\widehat{\operatorname{Var}(\hat{\theta})}$ :

$$
\widehat{\operatorname{Var}(\hat{\theta})}=\widehat{J V(\hat{\delta})} J^{\prime}
$$

where matrix $J$ is the Jacobian matrix for the function:

$$
\hat{\theta}=g(\hat{\delta})
$$

whose elemets are its first partial derivatives:

$$
J_{i j}=\frac{\partial g\left(\hat{\delta_{i}}\right)}{\partial \hat{\delta_{j}}}
$$

For the non transformed parameters, first derivatives are zero other then when the parameter is derived with respect to itself and in that case the result is 1 . For the transformed parameters we have:

$$
\begin{aligned}
& \frac{\partial \hat{\sigma} \varepsilon}{\partial \hat{\lambda}}=e^{\hat{\lambda}} \\
& \frac{\partial \hat{\rho}}{\partial \hat{a}}=\frac{1}{c_{\hat{a}}^{2}}
\end{aligned}
$$

The values of standard errors we present in section 6 are base on the quasi-ML "sandwich" estimator (Davidson, MacKinnon 2004), $\widehat{\operatorname{Var}_{R}(\hat{\delta})}$

$$
\left.\widehat{\operatorname{Var}_{R}(\hat{\delta}}\right)=H(\hat{\delta})^{-1}\left(G^{\prime}(\hat{\delta}) G(\hat{\delta})\right)^{-1} H(\hat{\delta})^{-1}
$$

However, doestimation provides other two estimates of the covariance matrix: the first one is based on the Outer Product of the Gradient:

$$
\widehat{\operatorname{Var}_{O P G}}(\hat{\delta})=\left(G^{\prime}(\hat{\delta}) G(\hat{\delta})\right)^{-1}
$$

while the second covariance matrix is computed from a numerical approximation to the Hessian at convergence:

$$
\widehat{\operatorname{Var}_{H}(\hat{\delta})}=(H(\hat{\delta}))^{-1}
$$

- A further transformation of parameters is implemented to give coefficients for the conditional mean equation (10) as outlined in section (4.3). The standard errors are based on the robust covariance matrix estimator and Jacobian matrix uses the following first partial derivatives:

$$
\begin{gathered}
\frac{\partial \alpha_{0}}{\partial \beta_{j}}=0 \quad \frac{\partial \alpha_{0}}{\partial \gamma_{j}}=0 \\
\frac{\partial \alpha_{0}}{\partial \lambda}=-\alpha_{0} \\
\frac{\partial \alpha_{0}}{\partial a}=\frac{1}{\sigma_{\varepsilon}} \frac{1}{c_{\hat{a}}^{2}} \\
\frac{\partial \alpha_{1 i}}{\partial \beta_{j}}=0 \quad \frac{\partial \alpha_{1 i}}{\partial \beta_{i}}=-\alpha_{0} \\
\frac{\partial \alpha_{1 i}}{\partial \gamma_{j}}=0 \quad \frac{\partial \alpha_{1 i}}{\partial \gamma_{i}}=1 \\
\frac{\partial \alpha_{1}}{\partial \lambda}=\alpha_{0} \beta \\
\frac{\partial \alpha_{1}}{\partial a}=-\frac{1}{\sigma_{\varepsilon}} \frac{1}{c_{\hat{a}}^{2}} \beta
\end{gathered}
$$

- Finally doestimation prints the output for equations (12) (13) and (14) using the gretl command modprint


## Results

Table 6: Potential Credits Equation: Faculty of Agriculture

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :--- | :---: | :--- | ---: | :--- |
| Const. | 14.7622 | 3.23454 | 4.5639 | 0.0000 |
| Gender: male | 0.254227 | 0.130392 | 1.9497 | 0.0512 |
| Age | -2.05405 | 1.32240 | -1.5533 | 0.1204 |
| Age2 | 0.0177153 | 0.241182 | 0.0735 | 0.9414 |
| H.S.Grade: mean dev. | 0.0803026 | 0.00476642 | 16.8476 | 0.0000 |
| Av. Peer Effect | -0.118818 | 0.0342397 | -3.4702 | 0.0005 |
| Classical | -0.226150 | 0.259512 | -0.8714 | 0.3835 |
| Languages | 0.118094 | 0.295181 | 0.4001 | 0.6891 |
| Technical | -0.606092 | 0.145578 | -4.1634 | 0.0000 |
| Pedagogical | -0.508820 | 0.355253 | -1.4323 | 0.1521 |
| Vocational | -1.84642 | 0.246053 | -7.5041 | 0.0000 |
| Other | -2.37433 | 0.398647 | -5.9560 | 0.0000 |
| Site: peripheral | -1.01406 | 0.720808 | -1.4068 | 0.1595 |
| Prov. Ancona | -0.387507 | 0.176524 | -2.1952 | 0.0281 |
| Marche | -0.110633 | 0.186600 | -0.5929 | 0.5533 |
| Other Regions | -0.0626113 | 0.223862 | -0.2797 | 0.7797 |
| En. Year 2000 | -0.950929 | 0.188081 | -5.0560 | 0.0000 |
| En. Year 2001 | 1.61638 | 0.255052 | 6.3374 | 0.0000 |
| En. Year 2002 | 2.06902 | 0.233042 | 8.8783 | 0.0000 |
| En. Year 2003 | 2.06126 | 0.213306 | 9.6634 | 0.0000 |
| En. Year 2004 | 1.71052 | 0.199227 | 8.5858 | 0.0000 |
| En. Year 2005 | 2.07537 | 0.193477 | 10.7267 | 0.0000 |
| En. Year 2006 | 1.98491 | 0.202692 | 9.7928 | 0.0000 |

Table 7: Retention Equation: Faculty of Agriculture

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :--- | :---: | :--- | ---: | :--- |
| Const | 8.90198 | 2.20476 | 4.0376 | 0.0001 |
| Gender: male | 0.112668 | 0.100110 | 1.1254 | 0.2604 |
| Age | -1.84949 | 0.573531 | -3.2247 | 0.0013 |
| Age2 | 0.202308 | 0.0921013 | 2.1966 | 0.0281 |
| H.S.Grade: mean dev. | 0.0295803 | 0.00376877 | 7.8488 | 0.0000 |
| Av. Peer Effect | -0.0631134 | 0.0252432 | -2.5002 | 0.0124 |
| Classical | -0.0344400 | 0.235721 | -0.1461 | 0.8838 |
| Languages | 0.0276809 | 0.227194 | 0.1218 | 0.9030 |
| Technical | -0.274474 | 0.112457 | -2.4407 | 0.0147 |
| Pedagogical | -0.287226 | 0.245161 | -1.1716 | 0.2414 |
| Vocational | -0.664930 | 0.160527 | -4.1422 | 0.0000 |
| Other | -0.958307 | 0.409169 | -2.3421 | 0.0192 |
| Site: peripheral | -0.743662 | 0.413449 | -1.7987 | 0.0721 |
| Prov. Ancona | -0.221727 | 0.134296 | -1.6510 | 0.0987 |
| Marche | 0.180191 | 0.143485 | 1.2558 | 0.2092 |
| Other Regions | -0.0841921 | 0.177448 | -0.4745 | 0.6352 |
| En. Year 2000 | -0.326907 | 0.209311 | -1.5618 | 0.1183 |
| En. Year 2001 | 0.0328539 | 0.208857 | 0.1573 | 0.8750 |
| En. Year 2002 | -0.143668 | 0.208364 | -0.6895 | 0.4905 |
| En. Year 2003 | 0.174805 | 0.205111 | 0.8522 | 0.3941 |
| En. Year 2004 | -0.0571107 | 0.192222 | -0.2971 | 0.7664 |
| En. Year 2005 | -0.00943172 | 0.188965 | -0.0499 | 0.9602 |
| En. Year 2006 | -0.338332 | 0.192621 | -1.7565 | 0.0790 |

Table 8: Standard Deviation and Correlation Coefficient: Faculty of Agriculture

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :--- | :--- | :--- | :---: | :--- |
| $\sigma_{\varepsilon}$ | 1.81096 | 0.0506616 | 35.7462 | 0.0000 |
| $\rho$ | 0.850335 | 0.0167647 | 50.7218 | 0.0000 |

Table 9: Conditional Mean Equation: Faculty of Agriculture

|  |  | Coefficient | Std. Error | $z$-stat |
| :--- | :---: | :--- | ---: | :--- |
|  | p-value |  |  |  |
| $\alpha_{0}$ | 0.469550 | 0.0136659 | 34.3594 | 0.0000 |
| Const. | 1.97041 | 1.81201 | 1.0874 | 0.2769 |
| Gender: male | -0.00670415 | 0.0823846 | -0.0814 | 0.9351 |
| Age | -0.885009 | 0.666254 | -1.3283 | 0.1841 |
| Age2 | 0.193989 | 0.123727 | 1.5679 | 0.1169 |
| H.S.Grade: mean dev. | -0.00812580 | 0.00313217 | -2.5943 | 0.0095 |
| Av. Peer Effect | -0.00732239 | 0.0198641 | -0.3686 | 0.7124 |
| Classical | 0.0717486 | 0.216241 | 0.3318 | 0.7400 |
| Languages | -0.0277702 | 0.169797 | -0.1635 | 0.8701 |
| Technical | 0.0101162 | 0.0944086 | 0.1072 | 0.9147 |
| Pedagogical | -0.0483097 | 0.200996 | -0.2404 | 0.8101 |
| Vocational | 0.202057 | 0.133996 | 1.5079 | 0.1316 |
| Other | 0.156561 | 0.323135 | 0.4845 | 0.6280 |
| Site: peripheral | -0.267512 | 0.215475 | -1.2415 | 0.2144 |
| Prov. Ancona | -0.0397737 | 0.112024 | -0.3550 | 0.7226 |
| Marche | 0.232139 | 0.118968 | 1.9513 | 0.0510 |
| Other Regions | -0.0547929 | 0.151495 | -0.3617 | 0.7176 |
| En. Year 2000 | 0.119601 | 0.194248 | 0.6157 | 0.5381 |
| En. Year 2001 | -0.726116 | 0.181584 | -3.9988 | 0.0001 |
| En. Year 2002 | -1.11518 | 0.183034 | -6.0927 | 0.0000 |
| En. Year 2003 | -0.793057 | 0.183136 | -4.3304 | 0.0000 |
| En. Year 2004 | -0.860285 | 0.172483 | -4.9876 | 0.0000 |
| En. Year 2005 | -0.983922 | 0.169996 | -5.7879 | 0.0000 |
| En. Year 2006 | -1.27035 | 0.173416 | -7.3254 | 0.0000 |

Table 10: Potential Credits Equation: Faculty of Economics

|  |  | Coefficient | Std. Error | $z$-stat |
| :--- | :---: | :--- | ---: | :--- |
|  | p-value |  |  |  |
| Const | 6.45083 | 2.21861 | 2.9076 | 0.0036 |
| Gender:male | -0.208359 | 0.0660799 | -3.1531 | 0.0016 |
| Age | -7.61913 | 0.807610 | -9.4342 | 0.0000 |
| Age2 | 1.04502 | 0.137416 | 7.6048 | 0.0000 |
| H.S.Grade: mean dev. | 0.0743434 | 0.00260541 | 28.5343 | 0.0000 |
| Av. Peer Effect | 0.0773302 | 0.0232238 | 3.3298 | 0.0009 |
| Classical | -0.0438684 | 0.149629 | -0.2932 | 0.7694 |
| Languages | -0.750802 | 0.171713 | -4.3724 | 0.0000 |
| Technical | -0.323158 | 0.0702658 | -4.5991 | 0.0000 |
| Pedagogical | -0.843756 | 0.176033 | -4.7932 | 0.0000 |
| Vocational | -1.59943 | 0.138963 | -11.5097 | 0.0000 |
| Other | -1.35724 | 0.462687 | -2.9334 | 0.0034 |
| Site: peripheral | 0.516664 | 0.159723 | 3.2347 | 0.0012 |
| Prov. Ancona | -0.0396997 | 0.0938924 | -0.4228 | 0.6724 |
| Marche | 0.100030 | 0.0924730 | 1.0817 | 0.2794 |
| Other Regions | -0.448655 | 0.136385 | -3.2896 | 0.0010 |
| Foreign | 0.158432 | 0.283609 | 0.5586 | 0.5764 |
| En. Year 2000 | -0.0585324 | 0.104973 | -0.5576 | 0.5771 |
| En. Year 2001 | 2.18176 | 0.105414 | 20.6970 | 0.0000 |
| En. Year 2001 | 2.44489 | 0.113047 | 21.6272 | 0.0000 |
| En. Year 2003 | 2.45050 | 0.110079 | 22.2613 | 0.0000 |
| En. Year 2004 | 2.40604 | 0.115200 | 20.8857 | 0.0000 |
| En. Year 2005 | 2.27692 | 0.111481 | 20.4242 | 0.0000 |
| En. Year 2006 | 2.34530 | 0.117495 | 19.9608 | 0.0000 |

Table 11: Retention Equation: Faculty of Economics

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :---: | :---: | :---: | :---: | :---: |
| Const | 3.15778 | 1.33046 | 2.3734 | 0.0176 |
| Gender: male | -0.121647 | 0.0458936 | -2.6506 | 0.0080 |
| Age | -2.77304 | 0.387104 | -7.1635 | 0.0000 |
| Age2 | 0.388450 | 0.0646304 | 6.0103 | 0.0000 |
| H.S.Grade: mean dev. | 0.0234248 | 0.00183224 | 12.7848 | 0.0000 |
| Av. Peer Effect | 0.0211494 | 0.0145689 | 1.4517 | 0.1466 |
| Classical | -0.153255 | 0.110699 | -1.3844 | 0.1662 |
| Languages | -0.441049 | 0.115451 | -3.8202 | 0.0001 |
| Technical | -0.259199 | 0.0518558 | -4.9985 | 0.0000 |
| Pedagogical | $-0.428003$ | 0.113773 | -3.7619 | 0.0002 |
| Vocational | $-0.761614$ | 0.0848841 | -8.9724 | 0.0000 |
| Other | $-0.172728$ | 0.251819 | -0.6859 | 0.4928 |
| Site: peripheral | 0.189639 | 0.0984161 | 1.9269 | 0.0540 |
| Prov. Ancona | 0.0880335 | 0.0610624 | 1.4417 | 0.1494 |
| Marhce | 0.151139 | 0.0616434 | 2.4518 | 0.0142 |
| Other Regions | -0.0340386 | 0.0858473 | -0.3965 | 0.6917 |
| Foreign | 0.308632 | 0.176273 | 1.7509 | 0.0800 |
| En. Year 2000 | 0.0536895 | 0.0876460 | 0.6126 | 0.5402 |
| En. Year 2001 | 0.374260 | 0.0865238 | 4.3255 | 0.0000 |
| En. Year 2002 | 0.411612 | 0.0877723 | 4.6895 | 0.0000 |
| En. Year 2003 | 0.442055 | 0.0885101 | 4.9944 | 0.0000 |
| En. Year 2004 | 0.234476 | 0.0913882 | 2.5657 | 0.0103 |
| En. Year 2005 | 0.219319 | 0.0897153 | 2.4446 | 0.0145 |
| En. Year 2006 | 0.158430 | 0.0893857 | 1.7724 | 0.0763 |

Table 12: Standard Deviation and Correlation Coefficient: Faculty of Economics

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :--- | :--- | :--- | :---: | :--- |
| $\sigma_{\varepsilon}$ | 2.10878 | 0.0308650 | 68.3226 | 0.0000 |
| $\rho$ | 0.834623 | 0.00966831 | 86.3256 | 0.0000 |

Table 13: Conditional Mean Equation: Faculty of Economics

|  |  | Coefficient | Std. Error | $z$-stat |
| :--- | :---: | :--- | ---: | :--- |
|  | p-value |  |  |  |
| $\alpha_{0}$ | 0.395785 | 0.00633883 | 62.4382 | 0.0000 |
| Const | 0.604638 | 1.03410 | 0.5847 | 0.5587 |
| Gender: male | -0.0391812 | 0.0389286 | -1.0065 | 0.3142 |
| Age | 0.242504 | 0.302855 | 0.8007 | 0.4233 |
| Age2 | -0.0251521 | 0.0514561 | -0.4888 | 0.6250 |
| H.S.Grade: mean dev. | -0.00599926 | 0.00154939 | -3.8720 | 0.0001 |
| Av Peer Effect | -0.00945672 | 0.0114508 | -0.8259 | 0.4089 |
| Classical | -0.135892 | 0.100045 | -1.3583 | 0.1744 |
| Languages | -0.143893 | 0.0944756 | -1.5231 | 0.1277 |
| Technical | -0.131298 | 0.0453511 | -2.8951 | 0.0038 |
| Pedagogical | -0.0940568 | 0.0921240 | -1.0210 | 0.3073 |
| Vocational | -0.128584 | 0.0638357 | -2.0143 | 0.0440 |
| Other | 0.364449 | 0.165980 | 2.1957 | 0.0281 |
| Site: peripheral | -0.0148485 | 0.0790021 | -0.1880 | 0.8509 |
| Prov. Ancona | 0.103746 | 0.0502801 | 2.0634 | 0.0391 |
| Marche | 0.111549 | 0.0510291 | 2.1860 | 0.0288 |
| Other Regions | 0.143533 | 0.0689846 | 2.0806 | 0.0375 |
| Foreign | 0.245927 | 0.132840 | 1.8513 | 0.0641 |
| En. Year 2000 | 0.0768558 | 0.0785716 | 0.9782 | 0.3280 |
| En. Year 2001 | -0.489249 | 0.0757483 | -6.4589 | 0.0000 |
| En. Year 2002 | -0.556040 | 0.0748663 | -7.4271 | 0.0000 |
| En. Year 2003 | -0.527818 | 0.0768315 | -6.8698 | 0.0000 |
| En. Year 2004 | -0.717799 | 0.0794895 | -9.0301 | 0.0000 |
| En. Year 2005 | -0.681853 | 0.0781789 | -8.7217 | 0.0000 |
| En. Year 2006 | -0.769805 | 0.0754718 | -10.1999 | 0.0000 |

Table 14: Potential Credits Equation: Faculty of Engineering

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :---: | :---: | :---: | :---: | :---: |
| Const | 10.4821 | 1.89776 | 5.5234 | 0.0000 |
| Gender: male | 0.00473948 | 0.0741672 | 0.0639 | 0.9490 |
| Age | -5.52073 | 0.978836 | -5.6401 | 0.0000 |
| Age2 | 0.700063 | 0.175276 | 3.9941 | 0.0001 |
| H.S.Grade: mean dev. | 0.0887505 | 0.00225870 | 39.2928 | 0.0000 |
| Av. Peer Effect | -0.0117098 | 0.0142861 | -0.8197 | 0.4124 |
| Classical | -0.964826 | 0.141232 | -6.8315 | 0.0000 |
| Languages | -1.48828 | 0.272844 | -5.4547 | 0.0000 |
| Technical | -1.27294 | 0.0586735 | -21.6952 | 0.0000 |
| Pedagogical | -1.88218 | 0.342361 | -5.4976 | 0.0000 |
| Vocational | -2.98449 | 0.157044 | -19.0042 | 0.0000 |
| Other | -2.91013 | 0.263889 | -11.0279 | 0.0000 |
| Site: peripheral | 0.381153 | 0.112127 | 3.3993 | 0.0007 |
| Prov. Ancona | 0.0628910 | 0.107468 | 0.5852 | 0.5584 |
| Marche | 0.304869 | 0.103307 | 2.9511 | 0.0032 |
| Other Regions | -0.104219 | 0.106064 | -0.9826 | 0.3258 |
| Foreign | 0.291092 | 0.265283 | 1.0973 | 0.2725 |
| En. Year 2000 | 0.203144 | 0.0819923 | 2.4776 | 0.0132 |
| En. Year 2001 | 2.46051 | 0.0958343 | 25.6746 | 0.0000 |
| En. Year 2002 | 2.74917 | 0.0985760 | 27.8888 | 0.0000 |
| En. Year 2003 | 2.48920 | 0.0962505 | 25.8617 | 0.0000 |
| En. Year 2004 | 2.13024 | 0.0947134 | 22.4915 | 0.0000 |
| En. Year 2005 | 2.48397 | 0.0943838 | 26.3178 | 0.0000 |
| En. Year 2006 | 2.03427 | 0.0943128 | 21.5694 | 0.0000 |

Table 15: Retention Equation: Faculty of Engineering

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :--- | :---: | :--- | ---: | :--- |
| Const | 3.26741 | 1.04715 | 3.1203 | 0.0018 |
| Gender: male | 0.00159404 | 0.0475852 | 0.0335 | 0.9733 |
| Age | -2.74434 | 0.522375 | -5.2536 | 0.0000 |
| Age2 | 0.378182 | 0.0933305 | 4.0521 | 0.0001 |
| H.S.Grade: mean dev. | 0.0301530 | 0.00139729 | 21.5797 | 0.0000 |
| Av. Peer Effect | 0.0167898 | 0.00794175 | 2.1141 | 0.0345 |
| Classical | -0.338141 | 0.0880787 | -3.8391 | 0.0001 |
| Languages | -0.653261 | 0.173970 | -3.7550 | 0.0002 |
| Technical | -0.544614 | 0.0373783 | -14.5703 | 0.0000 |
| Pedagogical | -0.830394 | 0.201096 | -4.1293 | 0.0000 |
| Vocational | -1.22964 | 0.0840289 | -14.6336 | 0.0000 |
| Other | -1.24718 | 0.143584 | -8.6860 | 0.0000 |
| Site: peripheral | 0.245483 | 0.0628209 | 3.9077 | 0.0001 |
| Prov. Ancona | -0.0484796 | 0.0676357 | -0.7168 | 0.4735 |
| Marche | 0.0890438 | 0.0650259 | 1.3694 | 0.1709 |
| Other Regions | -0.0497806 | 0.0665587 | -0.7479 | 0.4545 |
| Marche | 0.0415400 | 0.161593 | 0.2571 | 0.7971 |
| En. Year 2000 | 0.0269698 | 0.0599191 | 0.4501 | 0.6526 |
| En. Year 2001 | 0.493705 | 0.0641206 | 7.6996 | 0.0000 |
| En. Year 2002 | 0.571577 | 0.0658899 | 8.6747 | 0.0000 |
| En. Year 2003 | 0.486025 | 0.0660772 | 7.3554 | 0.0000 |
| En. Year 2004 | 0.138320 | 0.0653087 | 2.1179 | 0.0342 |
| En. Year 2005 | 0.335427 | 0.0661272 | 5.0725 | 0.0000 |
| En. Year 2006 | 0.170141 | 0.0648303 | 2.6244 | 0.0087 |

Table 16: Standard Deviation and Correlation Coefficient: Faculty of Engineering

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :--- | :--- | :--- | ---: | :--- |
| $\sigma_{\varepsilon}$ | 2.10875 | 0.0253192 | 83.2868 | 0.0000 |
| $\rho$ | 0.878268 | 0.00743363 | 118.1480 | 0.0000 |

Table 17: Conditional Mean Equation: Faculty of Engineering

|  |  |  |  |  |
| :--- | :---: | :--- | ---: | :--- |
|  | Coefficient | Std. Error | $z$-stat | p-value |
| $\alpha_{0}$ | 0.416487 | 0.00556292 | 74.8684 | 0.0000 |
| Const | -1.09825 | 0.655172 | -1.6763 | 0.0937 |
| Gender: male | -0.000379889 | 0.0382979 | -0.0099 | 0.9921 |
| Age | -0.445032 | 0.224889 | -1.9789 | 0.0478 |
| Age2 | 0.0866146 | 0.0360649 | 2.4016 | 0.0163 |
| H.S.Grade: mean dev. | -0.00681038 | 0.00107886 | -6.3125 | 0.0000 |
| Av. Peer Effect | 0.0216668 | 0.00587033 | 3.6909 | 0.0002 |
| Classical | 0.0636971 | 0.0647083 | 0.9844 | 0.3249 |
| Languages | -0.0334100 | 0.139122 | -0.2401 | 0.8102 |
| Technical | -0.0144534 | 0.0291536 | -0.4958 | 0.6201 |
| Pedagogical | -0.0464908 | 0.151407 | -0.3071 | 0.7588 |
| Vocational | 0.0133580 | 0.0554206 | 0.2410 | 0.8095 |
| Other | -0.0351453 | 0.0969157 | -0.3626 | 0.7169 |
| Site: peripheral | 0.0867377 | 0.0456080 | 1.9018 | 0.0572 |
| Prov. Ancona | -0.0746728 | 0.0530798 | -1.4068 | 0.1595 |
| Marche | -0.0379301 | 0.0509783 | -0.7440 | 0.4569 |
| Other Regions | -0.00637474 | 0.0522322 | -0.1220 | 0.9029 |
| Foreign | -0.0796960 | 0.115944 | -0.6874 | 0.4919 |
| En. Year 2000 | -0.0576370 | 0.0496577 | -1.1607 | 0.2458 |
| En. Year 2001 | -0.531064 | 0.0490369 | -10.8299 | 0.0000 |
| En. Year 2002 | -0.573416 | 0.0504067 | -11.3758 | 0.0000 |
| En. Year 2003 | -0.550694 | 0.0498958 | -11.0369 | 0.0000 |
| En. Year 2004 | -0.748900 | 0.0513005 | -14.5983 | 0.0000 |
| En. Year 2005 | -0.699116 | 0.0525884 | -13.2941 | 0.0000 |
| En. Year 2006 | -0.677107 | 0.0510252 | -13.2700 | 0.0000 |

Table 18: Potential Credits Equation: Faculty of Sciences

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :--- | :---: | :--- | ---: | :--- |
| Const | 21.4269 | 3.47234 | 6.1707 | 0.0000 |
| Gender: male | 0.0257308 | 0.0945835 | 0.2720 | 0.7856 |
| Age | -1.53479 | 0.976325 | -1.5720 | 0.1159 |
| Age2 | 0.163495 | 0.160527 | 1.0185 | 0.3084 |
| H.S.Grade: mean dev. | 0.0593614 | 0.00342747 | 17.3193 | 0.0000 |
| Av. Peer Effect | -0.230290 | 0.0385432 | -5.9748 | 0.0000 |
| Classical | -0.440669 | 0.119955 | -3.6736 | 0.0002 |
| Languages | -0.298341 | 0.194727 | -1.5321 | 0.1255 |
| Technical | -1.23528 | 0.124453 | -9.9257 | 0.0000 |
| Pedagogical | -0.929865 | 0.165954 | -5.6032 | 0.0000 |
| Vocational | -1.73861 | 0.204444 | -8.5041 | 0.0000 |
| Other | -0.920313 | 0.438249 | -2.1000 | 0.0357 |
| Prov. Ancona | 0.377204 | 0.138060 | 2.7322 | 0.0063 |
| Marche | 0.404265 | 0.137762 | 2.9345 | 0.0033 |
| Other regions | 0.600305 | 0.144529 | 4.1535 | 0.0000 |
| Foreign | 0.518078 | 0.479181 | 1.0812 | 0.2796 |
| En. Year 2000 | 1.06874 | 0.181022 | 5.9039 | 0.0000 |
| En. Year 2001 | 0.598356 | 0.185622 | 3.2235 | 0.0013 |
| En. Year 2002 | 0.439551 | 0.170317 | 2.5808 | 0.0099 |
| En. Year 2003 | 0.345938 | 0.159681 | 2.1664 | 0.0303 |
| En. Year 2004 | 0.937754 | 0.168929 | 5.5512 | 0.0000 |
| En. Year 2005 | 0.797484 | 0.176789 | 4.5109 | 0.0000 |
| En. Year 2006 | 0.941962 | 0.171298 | 5.4990 | 0.0000 |

Table 19: Retention Equation: Faculty of Sciences

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :--- | :---: | :--- | ---: | :--- |
| Const | 10.4271 | 2.36008 | 4.4181 | 0.0000 |
| Gender: male | -0.00311001 | 0.0699084 | -0.0445 | 0.9645 |
| Age | -0.0750014 | 0.670251 | -0.1119 | 0.9109 |
| Age2 | -0.0220279 | 0.110455 | -0.1994 | 0.8419 |
| H.S.Grade: mean dev. | 0.0221786 | 0.00266871 | 8.3106 | 0.0000 |
| Av. Peer Effect | -0.127779 | 0.0261048 | -4.8948 | 0.0000 |
| Classical | -0.137449 | 0.0942302 | -1.4587 | 0.1447 |
| Languages | -0.173476 | 0.145573 | -1.1917 | 0.2334 |
| Technical | -0.580132 | 0.0905141 | -6.4093 | 0.0000 |
| Pedagogical | -0.483691 | 0.120711 | -4.0070 | 0.0001 |
| Vocational | -0.887618 | 0.136478 | -6.5037 | 0.0000 |
| Other | -0.803282 | 0.300178 | -2.6760 | 0.0075 |
| Prov. Ancona | 0.261935 | 0.100822 | 2.5980 | 0.0094 |
| Marche | 0.184856 | 0.101752 | 1.8167 | 0.0693 |
| Other Regions | 0.336950 | 0.109805 | 3.0686 | 0.0022 |
| Foreign | 0.572895 | 0.352837 | 1.6237 | 0.1044 |
| En. Year 2000 | 0.436256 | 0.137628 | 3.1698 | 0.0015 |
| En. Year 2001 | 0.342731 | 0.139295 | 2.4605 | 0.0139 |
| En. Year 2002 | 0.443300 | 0.126302 | 3.5099 | 0.0004 |
| En. Year 2003 | 0.402965 | 0.121052 | 3.3288 | 0.0009 |
| En. Year 2004 | 0.254492 | 0.126511 | 2.0116 | 0.0443 |
| En. Year 2005 | -0.0682184 | 0.129761 | -0.5257 | 0.5991 |
| En. Year 2006 | -0.0581891 | 0.126506 | -0.4600 | 0.6455 |

Table 20: Standard Deviation and Correlation Coefficient: Faculty of Sciences

|  | Coefficient | Std. Error | $z$-stat | p-value |
| :--- | :--- | :--- | :---: | :--- |
| $\sigma_{\varepsilon}$ | 1.60935 | 0.0325719 | 49.4092 | 0.0000 |
| $\rho$ | 0.833593 | 0.0133118 | 62.6206 | 0.0000 |

Table 21: Conditional Mean Equation: Faculty of Sciences

|  |  | Coefficient | Std. Error | $z$-stat |
| :--- | :---: | :--- | ---: | :--- |
|  | p-value |  |  |  |
| $\alpha_{0}$ | 0.517967 | 0.0116226 | 44.5655 | 0.0000 |
| Const | -0.671322 | 1.81304 | -0.3703 | 0.7112 |
| Gender: male | -0.0164377 | 0.0542525 | -0.3030 | 0.7619 |
| Age | 0.719972 | 0.540079 | 1.3331 | 0.1825 |
| Age2 | -0.106713 | 0.0896613 | -1.1902 | 0.2340 |
| H.S.Grade: mean dev. | -0.00856863 | 0.00217952 | -3.9314 | 0.0001 |
| Av. Peer Effect | -0.00849647 | 0.0201942 | -0.4207 | 0.6739 |
| Classical | 0.0908035 | 0.0785542 | 1.1559 | 0.2477 |
| Languages | -0.0189456 | 0.102477 | -0.1849 | 0.8533 |
| Technical | 0.0597037 | 0.0696250 | 0.8575 | 0.3912 |
| Pedagogical | -0.00205109 | 0.0907174 | -0.0226 | 0.9820 |
| Vocational | 0.0129272 | 0.0984135 | 0.1314 | 0.8955 |
| Other | -0.326590 | 0.177879 | -1.8360 | 0.0664 |
| Prov. Ancona | 0.0665559 | 0.0805919 | 0.8258 | 0.4089 |
| Marche | -0.0245398 | 0.0822817 | -0.2982 | 0.7655 |
| Other Regions | 0.0260117 | 0.0898211 | 0.2896 | 0.7721 |
| Foreign | 0.304547 | 0.296433 | 1.0274 | 0.3042 |
| En. Year 2000 | -0.117314 | 0.106512 | -1.1014 | 0.2707 |
| En. Year 2001 | 0.0328019 | 0.100212 | 0.3273 | 0.7434 |
| En. Year 2002 | 0.215627 | 0.0887500 | 2.4296 | 0.0151 |
| En. Year 2003 | 0.223780 | 0.0904903 | 2.4730 | 0.0134 |
| En. Year 2004 | -0.231234 | 0.0966290 | -2.3930 | 0.0167 |
| En. Year 2005 | -0.481289 | 0.0948624 | -5.0735 | 0.0000 |
| En. Year 2006 | -0.546094 | 0.0953996 | -5.7243 | 0.0000 |


[^0]:    ${ }^{1}$ OECD (2009):Education at a Glance
    ${ }^{2}$ The ministerial decree n. 509/1999 introduced a new framework regarding the Italian higher education system that came into effect in the academic year 2001/2002. The "Bologna Process" is a result of a series of conferences (Paris 1998, Bologna 1999, Prague 2001, Berlin 2003 and Bergen 2005) whose goal was to develop an integrated and coherent European Higher Education Area (EHEA)

[^1]:    ${ }^{3}$ We implement the algorithm to estimate the parameters of the bivariate latent variable system and then of the conditional mean equation in Gretl using version 1.8.7.

