Animal Spirits, Investment and Unemployment: An Old Keynesian View of the Great Recession∗

Marco Guerrazzi†

Version for the XXIX National Conference of Labour Economics
Pisa, September 11th-12th, 2014

Abstract

This paper develops a DSGE model with investment and capital accumulation build along demand-driven explanations of the Great Recession. Specifically, following Farmer (2013), I set forth a search model in which households decide about consumption while firms decide about recruiting effort as well as investment. This model closed with market clearing in good and asset markets has one less equation than unknowns. As a consequence, in order to solve such an indeterminacy, I assume that investment is driven by self-fulfilling expectations about its relative price. Consistently with the view of business cycles pushed by stock price fluctuations, this theoretical framework has the potential to provide a more comprehensive rationale of the consumption-investment patterns observed during the years of the crisis.

JEL Classification: E24, E32, E52, J64.

Keywords: Investment; Capital accumulation, Finance-induced recession; Search, DSGE Models.

1 Introduction

According to a widespread view, the Great Recession of 2007-2008 can be thought as the upshot of a dramatic lost of confidence triggered by the burst of a financial bubble that abruptly reduced house and stock prices (c.f. Hurd and Rohwedder 2010, Bell and

∗I would like to thank Roger Farmer and Paolo Gelain for comments and suggestions. The usual disclaimers apply.
†Author contacts: Department of Economics, University of Genoa, via F. Vivaldi n. 5, 16126 Genoa (Italy), Phone (+39) 010 2095225, Fax (+39) 010 2095269, E-mail guerrazzi@economia.unige.it
Blanchflower 2011 and Christelis et al. 2011). A prominent backer of this view is Farmer (2012a-b, 2013, 2014), who depicts the finance-induced recession as a self-fulfilling reduction of households’ financial wealth value that led to a sudden consumption contraction that, in turn, drove GDP (unemployment) downwards (upwards).

Farmer’s (2012a-b, 2013) theoretical framework reformulates into a Walrasian setting two important ideas from Keynes’s (1936) General Theory. The first is that the economy can be consistent with a continuum of steady-state unemployment equilibria, while the second is that beliefs of asset market participants might have an independent influence on the economic activity by selecting a perfect-foresight equilibrium in which private consumption, according to its dominant weight in GDP quotas, is assumed to be the only component of aggregate demand.

This theoretical proposal, sometimes referred as new ‘Farmerian’ economics, provides new interesting insights on business cycles fluctuations and gives the chance to dig out into the Keynesian view according to which market confidence is essential in determining realized macroeconomic outcomes.\(^1\) However, it is well known that in the General Theory the component of private expenditure mainly driven by market psychology instead of economy’s fundamentals is not consumption but corporate investments; indeed, Keynes (1936) coined the term ‘animal spirits’ just to describe the non-fundamental based behaviour of entrepreneurs regarding investment spending. Moreover, according to Keynes (1936), private investment - via the multiplier effect - was the main driver of business cycles (c.f. Smith and Zoega 2009).

As far as US data are concerned, the importance of corporate investments in explaining macroeconomic fluctuations is still hard to neglect. For instance, table 1 collects the volatility, the persistence and the correlation matrix of GDP \((Y)\), consumption \((C)\), private investments \((I)\), and unemployment \((U)\).

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \ln (Y))</th>
<th>(\Delta \ln (C))</th>
<th>(\Delta \ln (I))</th>
<th>(\Delta \ln (U))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>0.9457</td>
<td>0.8429</td>
<td>4.4509</td>
<td>6.8275</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.3889</td>
<td>0.0889</td>
<td>0.1993</td>
<td>0.6167</td>
</tr>
<tr>
<td>Correlation matrix</td>
<td>(\Delta \ln (Y))</td>
<td>1</td>
<td>0.6177</td>
<td>0.7828</td>
</tr>
<tr>
<td></td>
<td>(\Delta \ln (C))</td>
<td>-</td>
<td>1</td>
<td>0.2573</td>
</tr>
<tr>
<td></td>
<td>(\Delta \ln (I))</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(\Delta \ln (U))</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: US data (1950-2012), quantity indexes

\(^1\)An extensive review of the new Farmerian approach is given by Guerrazzi (2012).
Private investment (I) and unemployment (U) over the last sixty years on a quarterly basis. The figures show that the correlation of investment both to GDP and unemployment is slightly higher than the one of consumption. Moreover, among the components of private aggregate demand, investment appears as the more volatile variable so, at least in principle, the more prone to mirror sudden switches in market confidence.

Additional intriguing elements about investment behaviour can also be derived from the inspection of recent data. Specifically, figure 1 draws the paths of the real values of consumption and investment over the last twelve years. The diagram shows quite clearly that - in relative terms - the wave of pessimism triggered by the finance-induced recession of 2008-2009 had a stronger negative impact on investment expenditure than on consumption. Moreover, while the latter already recovered its pre-crisis weight at the end of 2010, the former, as pointed out by Lavander and Parent (2012-2013), is still below its 2007 magnitude. Along these lines, Zoega (2010) points out the simultaneous deficiency of employment and investment that characterized the latest financial crisis.

![Figure 1: US consumption and investment (2000-2012), percentage of GDP](image)

In this paper, taking into account the macroeconomic patterns sketched above, I introduce productive investment and capital accumulation in the one-sector framework de-

Data on GDP, consumption and investments are retrieved from the seasonally adjusted quantity indexes provided by the Bureau of Economic Analysis (Index Numbers, 2009=100). See www.bea.gov. Moreover, data on unemployment are retrieved from the Bureau of Labor Statistics. See www.bls.gov.
Specifically, I build a demand-driven search DSGE model in which households put forward an optimal trajectory for consumption while, at the same time, firms decide about optimal recruiting effort as well as an optimal trajectory for investment along the lines of the frameworks set forth by Jorgenson (1963), Abel and Blanchard (1983) and Chirinko (1993).

Given the presence of search frictions, the model economy closed with market clearing in asset and good markets is characterized by one more unknown than equations so that both its dynamics and its stationary solution remain indeterminate. In my own proposal, such an indeterminacy is solved by assuming that entrepreneurs form self-fulfilling expectations about the relative price of investment. This variable is assumed to convey the Keynesian state of long-term expectations that selects equilibrium unemployment period by period. Specifically, in the present model specification, the higher (lower) the perceived price of investment, the lower (higher) the equilibrium investment expenditure and the higher (lower) the equilibrium unemployment rate.

In addition, from a quantitative point of view, I show that the long-run behaviour of the model economy is consistent with the observed co-movements of GDP, consumption and investment. Moreover, I give robust evidence that the transmission mechanism of confidence shocks implied by this theoretical framework appears quite consistent with business cycles driven by self-fulfilling asset price fluctuations.

The paper is arranged as follows. Section 2 develops the social planner problem. Section 3 offers a decentralized version. Section 4 analyses some quantitative implications of the model. Finally, section 5 concludes.

2 Social planner problem

Following Farmer (2013), I begin by introducing the problem of a benevolent social planner whose goal is the maximization of the individual welfare of a representative household endowed with certain preferences. Such a social planner is constrained by two distinct technologies: the former describes how labour and capital combine themselves in order to produce output, the latter conveys the way in which unemployed workers can be recruited in the productive side of the economy.

In what follows, I provide a description of household preferences and binding technologies. Moreover, I solve the social planner problem and I find its stationary solution.

3Seminal attempts to introduce investment and capital accumulation in the new Farmerian model are given by Gelain and Guerrazzi (2010, 2015), Guerrazzi (2011, 2012) and Plotinikov (2013).
2.1 Household preferences and labour market participation

I will assume that the model economy is populated by a continuum of identical households endowed with logarithmic preferences that do not yield utility (disutility) from leisure (work).\footnote{In an unpublished appendix, Farmer shows that controlling for labour supply does not significantly alter the results achieved in this simplest context. See www.rogerfarmer.com.} As a consequence, the present value of households discounted utility can be written as

\[E_0 \left[\sum_{t=0}^{+\infty} \beta^t \log (C_t) \right] \quad 0 < \beta < 1 \quad (1) \]

where \(E [\cdot] \) is the expectation operator, \(\beta \) is the discount factor and \(C_t \) is the current real consumption.

The dimension of the representative household is normalized to one. Moreover, in each period its members can be alternatively employed or unemployed. Therefore, denoting employed household members by \(L_t \), it follows that the unemployment rate can be conveyed as

\[U_t = 1 - L_t \quad (2) \]

2.2 Production technology and capital accumulation

Output in this model economy is produced by means of a Cobb-Douglas technology by combining capital and labour in a stochastic manner. As a consequence,

\[Y_t = S_t K_t^\alpha X_t^{1-\alpha} \quad 0 < \alpha < 1 \quad (3) \]

where \(Y_t \) is the level of production, \(S_t \) is a supply shock, \(K_t \) is the stock of capital, \((1 - \alpha) \) is the elasticity of output with respect to capital (labour) and \(X_t \) is the amount of labour used in production.

Consistently with Farmer (2013), I assume that employed workers can be alternatively allocated in recruiting or production activities. Therefore,

\[L_t = X_t + V_t \quad (4) \]

where \(V_t \) is the share of employed workers allocated to recruiting.

Moreover, in contrast to Farmer (2013), the amount of output which is not consumed is assumed to boost capital accumulation. Therefore, the stock of capital evolves according to the usual dynamic law. Hence,
\[K_{t+1} = Y_t - C_t + (1 - \delta)K_t \quad 0 < \delta < 1 \] (5)

where \(\delta \) is the capital depreciation rate.

2.3 Search technology and employment dynamics

Symmetrically with production, the technology that moves unemployed workers from home to work is a Cobb-Douglas stochastic combination between recruiters and jobless workers. This leads to the following employment evolution law:

\[L_{t+1} = B_t V_t^\theta (1 - L_t)^{1-\theta} + (1 - \sigma)L_t \quad 0 < \theta < 1, 0 < \sigma < 1 \] (6)

where \(B_t \) is a matching shock, \(\theta (1 - \theta) \) is the elasticity of matching with respect to recruiters (unemployment) and \(\sigma \) is the exogenous job destruction rate.\(^5\)

2.4 Solution of the social planner problem

Taking into account the building blocks described above, the social planner problem can be written as

\[
\max_{\{C_t,V_t,K_{t+1},L_{t+1}\}} \mathbb{E}_0 \left[\sum_{t=0}^{+\infty} \beta^t \log (C_t) \right] \\
\text{s.to} \\
K_{t+1} = S_t K_t^\alpha (L_t - V_t)^{1-\alpha} - C_t + (1 - \delta)K_t \\
L_{t+1} = B_t V_t^\theta (1 - L_t)^{1-\theta} + (1 - \sigma)L_t \\
K_0 = \bar{K}, \quad L_0 = \bar{L}
\] (7)

where \(\bar{K} \) and \(\bar{L} \) are, respectively, the initial conditions for capital and employment.

The first-order conditions (FOCs) for the problem in (7) are the following:

\[
\frac{1}{C_t} = \beta E_t \left[\frac{\alpha S_{t+1} \Phi_{t+1}^{\alpha-1} + 1 - \delta}{C_{t+1}} \right] \\
\frac{S_t \Phi_t^\alpha \Psi_t^{1-\theta}}{\theta B_tC_t} = \beta E_t \left[\frac{S_{t+1} \Phi_{t+1}^{\alpha} \Psi_{t+1}^{1-\theta}}{C_{t+1}} \left(1 + \frac{(1 - \sigma) \Psi_{t+1}^{1-\theta} - (1 - \theta) B_{t+1} \Psi_{t+1}}{\theta B_{t+1}} \right) \right] \\
K_{t+1} = S_t \Phi_t^\alpha (L_t - V_t) - C_t + (1 - \delta)K_t
\] (9) (10) (11)

\(^5\)In the context of the standard search and matching model à la Pissarides (2000), an equivalent stochastic dynamics for (un)employment is set forth by Andolfatto (1996).
\[L_{t+1} = B_t \Psi_t^\theta (1 - L_t) + (1 - \sigma)L_t \]

(12)

\[\lim_{t \to +\infty} \beta^t \lambda_t K_t = 0 \]

(13)

\[\lim_{t \to +\infty} \beta^t \mu_t L_t = 0 \]

(14)

where \(\Phi_t \equiv K_t (L_t - V_t)^{-1} \), \(\Psi_t \equiv V_t (1 - L_t)^{-1} \) and \(\{\lambda_t\}_{t=0}^{+\infty} \) \(\{\mu_t\}_{t=0}^{+\infty} \) is the sequence of Lagrange multipliers on the capital accumulation constraint (employment evolution law).\(^6\)

The interpretation of the FOCs of the social planner problem is straightforward. Eqs. (9) and (10) are the Euler equations for the two control variables, namely, consumption and recruiters. Moreover, eq.s (11) and (12) reproduce the dynamics of the two state variables. Furthermore, (13) and (14) are the required transversality conditions.

The solution of the social planner’s problem is quite relevant; indeed, the implied trajectories for \(Y_t \) and \(U_t \) define, respectively, the potential output and the value of the unemployment rate that in conventional Keynesian models plays the role of the NAIRU.

2.5 Steady-state of the social planner problem

The the social planner problem is a concave maximum problem constrained by two convex technology constraints. As a consequence, (7) has a unique meaningful saddle-path stationary solution towards which all the endogenous variables asymptotically have to converge in order to verify the transversality conditions in eq.s (13) and (14) (c.f. Cass 1966).

Adopting the notational convention such that variables without time indexes denote steady-state values, the stationary solution of the social planner problem is defined by the following proposition:

Proposition 1 The employment steady-state solution of the social planner problem is given by

\[L = \frac{B_0 \hat{\Psi}^\theta}{\sigma + B_0 \hat{\Psi}^\theta} \]

(15)

where \(\hat{\Psi} \) is defined by the positive root of the following non-linear hyperbolic expression:

\[\Psi B (1 - \theta) \beta + \Psi^{1-\theta} (1 - \beta (1 - \sigma)) - B \theta \beta = 0 \]

(16)

\(^6\)It is worth noting that \(\Phi_t \) and \(\Psi_t \), convey, respectively, a measure of the capital-labour ratio and a measure of labour market tightness.
Thereafter, the steady-state levels of the other endogenous variables can be retrieved from

\[V = \left(\frac{\sigma L}{B(1-L)^{1-\theta}} \right)^{\frac{1}{\theta}} \]
\[K = \left(\frac{\alpha \beta S}{1-\beta(1-\delta)} \right) \frac{1-\delta}{1-\alpha} (L - V) \]
\[C = S \left(\frac{\alpha \beta S}{1-\beta(1-\delta)} \right) \frac{1-\delta}{1-\alpha} (L - V) - \delta K \]

The proof is given in Appendix.

Proposition 1 has two important implications. First, equilibrium (un)employment is not affected by technology shocks. As a consequence, the steady-state value of the wandering NAIRU implied by the solution of the social planner problem is driven by matching shocks only. Moreover, equilibrium (un)employment spills over into the other endogenous variables but not the other way round; indeed, equilibrium (un)employment is completely determined by the discount rate and the parameters underlying employment dynamics. In section 4, this result will be quite useful for calibrating the model.

3 A decentralized version

In this section, drawing on the theoretical works on investment by Jorgerson (1963), Abel and Blanchard (1983) and Chirinko (1993), I extend the framework developed by Farmer (2013) by taking into account that productive firms have to decide about the optimal amount of recruiters as well as the optimal trajectory of investment. As I will show below, this setting closed with market-clearing in asset and good markets displays steady-state and dynamics indeterminacy because it has one less equation than unknowns.

3.1 Households

In the decentralized economy households maximize their discounted flow of utility under a wealth-accumulation path. Moreover, consistently with the matching mechanism described in the previous section, they will set consumption also taking into account that, in each period, a market-determined share of their unemployed members will find a job while a fixed share of their employed members will lose its position. As a consequence, the representative household is assumed to solve the following problem:

\footnote{A by-product of this feature is that whenever \(\theta = 0.5 \), equilibrium (un)employment collapses to the value derived by Farmer (2013).}

\footnote{Such an indeterminacy does not arise in the general equilibrium model by Abel and Blanchard (1983) because they implicitly assume that the labour market always clear. By contrast, in the present framework, search frictions prevent this to happen.}
\[
\max_{\{\tilde{C}_t, A_{t+1}\}_{t=0}^{+\infty}} \mathbb{E}_0 \left[\sum_{t=0}^{+\infty} \beta^t \log \left(\tilde{C}_t \right) \right]
\]

s.t.
\[
A_{t+1} = (1 + r_t) A_t + w_t L_t - \tilde{C}_t \\
L_{t+1} = \tilde{q}_t (1 - L_t) + (1 - \sigma)L_t \\
A_0 = \bar{A}, L_0 = \bar{L}
\]

where \(\tilde{C}_t \) is the real value of consumption expenditure, \(A_t \) is current household’s wealth, \(r_t \) is the real interest rate, \(w_t \) is the real wage, \(\tilde{q}_t \) is the endogenous probability to find a job and \(\bar{A} \) is the initial level of wealth.

The FOCs for the household problem can be written as
\[
\frac{1}{\tilde{C}_t} = \beta \mathbb{E}_t \left[\frac{1 + r_{t+1}}{\tilde{C}_{t+1}} \right] \\
A_{t+1} = (1 + r_t) A_t + w_t L_t - \tilde{C}_t \\
\lim_{t \to +\infty} \beta^t \varphi_t A_t = 0
\]

where \(\varphi_t \) is the sequence of Lagrange multipliers on the wealth accumulation constraint.

Eq. (21) is the Euler equation for consumption. Moreover, eq.s (22) reproduces the dynamics of state variables. Furthermore, (23) is the required transversality condition.

Since employment dynamics enters the problem of the household as an exogenous shock and production technology is stochastic, I need to assume that there exists a complete set of Arrow securities indexed for each possible realization of the states of the world. Under those circumstances, the Euler equation in (21) implies that payments streams will be discounted period by period with the following price kernel:
\[
Q_t = \beta \left(\frac{\tilde{C}_t}{\tilde{C}_{t+1}} \right)
\]

3.2 Firms

Productive firms are assumed to set recruiters and investment by maximizing their discounted cash-flows under the capital accumulation constraint. Moreover, symmetrically with households, they will take into account that in each period recruiters can hire a
market-determined share of workers while a fixed share of employees quits for exogenous redundancy. Therefore, the problem of the representative firm can be written as

$$\max_{\{V_t, I_t, K_{t+1}, L_{t+1}\}_{t=0}^{\infty}} E_0 \left[\sum_{t=0}^{\infty} Q_t \left(S_t K_t^\alpha (L_t - V_t)^{1-\alpha} - p_{I,t} I_t - w_t L_t \right) \right]$$

subject to

$$K_{t+1} = I_t + (1 - \delta) K_t$$

$$L_{t+1} = q_t V_t + (1 - \sigma) L_t$$

$$K_0 = \overline{K}, \ L_0 = \overline{L}$$

where $p_{I,t}$ is the relative price of investment, I_t is real investment and q_t is the endogenous hiring effectiveness of each corporate recruiter.

The relative price of investment that enters the problem of firms can be interpreted in different ways. On the one hand, according to the seminal work by Jorgenson (1963), $p_{I,t}$ can be thought as an exogenously given price of capital goods divided by the GDP deflator. On the other hand, in the spirit of Abel and Blanchard (1983) and Chirinkio (1993), $p_{I,t}$ can be interpreted as a fixed adjustment cost conveyed in real terms that the firm has to pay in order to modify the level of its capital stock. By contrast, in this paper, I take the relative price of investment as the outcome of self-fulfilling beliefs. This modelling strategy is motivated by the fact that, everything else being equal, the higher (lower) the expected values of $p_{I,t}$, the lower (higher) the expected cash-flows of the firm. As a consequence, sudden changes in the expectations about $p_{I,t}$ have the potential to convey sharp shifts in corporate expected yield prospects.

The FOCs of the firm problem are the following:

$$p_{I,t} = E_t \left[Q_t \left(\alpha S_{t+1} \Phi_{t+1}^{\alpha-1} + p_{I,t+1} (1 - \delta) \right) \right]$$

$$\frac{(1 - \alpha) S_t \Phi_t^{\alpha}}{q_t} = E_t \left[Q_t \left((1 - \alpha) S_{t+1} \Phi_{t+1}^{\alpha} \left(1 + \frac{1 - \sigma}{q_{t+1}} \right) - w_{t+1} \right) \right]$$

$$K_{t+1} = I_t + (1 - \delta) K_t$$

$$L_{t+1} = q_t V_t + (1 - \sigma) L_t$$

$$\lim_{t \to \infty} \beta^t \omega_t K_t = 0$$

$$\lim_{t \to \infty} \beta^t \xi_t L_t = 0$$

10
where $\{\omega_t\}_{t=0}^{+\infty}$ is the sequence of Lagrange multipliers on the capital accumulation constraint (employment evolution law).

Eqs. (26) and (27) are Euler equations, respectively, for investment and recruiters. Moreover, eqs. (28) and (29) reproduces the dynamics of state variables. Furthermore, (30) and (31) are the transversality conditions.

3.3 Search probabilities

The probability to find a job as well as the recruiting effectiveness of corporate recruiters are both determined by assuming that in a symmetric equilibrium the employment evolution laws that affect the problems of households and firms describe the same employment path tracked by the employment dynamics that bind the social planner problem. As a consequence, in each period, the probability to find a job is given by

$$\tilde{q}_t = B_t \Psi_t^\theta$$

where

$$q_t = B_t \Psi_t^{\theta - 1}$$

The expressions in eqs. (32) and (33) mirror the traditional trading externalities that characterize a textbook search and matching economy (c.f. Pissarides 2000).

3.4 Characterizing equilibria

Leaving out supply and matching shocks that, by definition, are exogenous factors, the decentralized model is called in to determine period by period the following set of twelve endogenous variables:

$$\{\tilde{C}_t, A_t, L_t, V_t, I_t, K_t, Q_t, \tilde{q}_t, q_t, r_t, w_t, p_{I,t}\}$$

Straightforward algebra suggests that determinacy of the model requires the same number of equations. First, two of them immediately derive from the definitions of search probabilities, i.e., eqs (32) and (33). Moreover, the FOCs of households and firms problems provide additional seven forward- and backward-looking inter-temporal relationships. In details, the Euler equation for consumption, i.e., eq. (21), the price kernel, i.e., eq. (22), the wealth accumulation path, i.e., eq. (23), the Euler equation for investment, i.e., eq. (28), the Euler equation for recruiters, i.e., eq. (29), the capital evolution law, i.e., eq.
(30), and an employment dynamic pattern consistent with the already mentioned search probability, i.e., eq. (12).

To close the model three more equations are called in. On an intra-temporal basis, two important relationships come from the market-clearing conditions on asset and good markets, respectively,

\[A_t = K_t \]

and

\[\tilde{C}_t + p_{I,t} I_t = S_t \Phi_t^\alpha (L_t - V_t) \]

Finally, similarly to Farmer (2013), the balance between the number of equations and the number of unknowns is reached by assuming that entrepreneurs form self-fulfilling expectations about the relative price of investment. As a consequence,

\[E_t [p_{I,t+1}] = x_t \]

where \(x_t \) is a belief-function which is assumed to map observations of current and past prices to expectations about future prices.

There is a variety of ways \(x_t \) could be specified. For instance, Farmer (2012b) resorts to a martingale. Moreover, Farmer (2013) assumes that \(x_t \) takes the form of conventional adaptive expectation equations. Since in the next section I will focus only on steady-state equilibria, I will not provide any specific functional form for \(x_t \). For the time being, I leave the evolution of beliefs as well the short dynamics of the model economy to further developments.

3.5 Steady-state of the decentralized model

In steady-state, households’ Euler equation for consumption implies that the equilibrium real interest rate is given by

\[r = \frac{1 - \beta}{\beta} \]

Taking into account the result in eq. (41), the stationary solution of the other endogenous variables can be retrieved from the following proposition:
Proposition 2 Define the constants \(\Omega_0, \Omega_1 \) and \(\Omega_2 \) as follows

\[
\begin{align*}
\Omega_0 &\equiv \frac{1-\beta(1-\delta(1+\alpha))}{\alpha(1-\beta)} \\
\Omega_1 &\equiv \frac{1-\beta(1-\delta(1+\alpha))}{(1-\alpha)(1-\beta\delta(1-\beta))} \\
\Omega_2 &\equiv \frac{\sigma L}{B^\frac{1}{1-\beta}}
\end{align*}
\]

(42)

For each value of \(p_I \in (0, (\Omega_0 - \Omega_1)^{-1}) \), the (positive) employment steady-state solution of the decentralized version of the model is given by the root of the following hyperbolic equation:

\[
\frac{1}{p_I} - \Omega_0 + \Omega_1 \frac{1 - \Omega_2 \left(\frac{L}{1-L} \right)^{\frac{1-\delta}{\beta}}} {1 - \left(\frac{\alpha B}{\beta} \right) \left(\frac{L}{1-L} \right)^{\frac{1-\delta}{\beta}}} = 0
\]

(45)

Thereafter, the steady-state levels of the other endogenous variables can be obtained from the following equations:

\[
\begin{align*}
V &= \left(\frac{\sigma L}{B(1-L)^{1-\beta}} \right)^{\frac{1}{1-\beta}} \\
K &= A = \left(\frac{\alpha \beta S}{p_I(1-\beta(1-\delta))} \right)^{\frac{1}{1-\alpha}} (L - V) \\
I &= \delta K \\
w &= (1-\alpha) \left(\frac{K}{L} \right)^{\alpha} \left(1 - \left(\frac{L}{1-L} \right)^{\frac{1-\delta}{\beta}} \Omega_2 \right) \\
\tilde{C} &= Kr + wL \\
Q &= \beta
\end{align*}
\]

(46)

In addition, \(\Phi, \Psi, \tilde{q} \) and \(q \) can be derived from their respective definitions. \(^9\)

The proof is given in Appendix.

Proposition 2 suggests three interesting conclusions. First, in the decentralized model the equilibrium values of the belief function and the matching shock univocally select equilibrium (un)employment by solving the indeterminacy mentioned above. As a consequence, symmetrically with the employment steady-state solution of the social planner problem, supply shocks do not affect the equilibrium unemployment rate of the decentralized economy. Second, there exists an upper bound for the eligible equilibrium value of the relative price of investment that pushes equilibrium employment towards zero. Furthermore, whenever the equilibrium relative price of investments tend to zero, so that \(p_I^{-1} \) tends to infinity, the employment steady-state solution of the decentralized model tends to the full employment allocation; indeed, the hyperbolic expression on RHS of (45) tends to infinity if and only if \(L \) approaches one. The determination of equilibrium employment is illustrated in figure 2.

\(^9\)Dividing \(\tilde{C} \) by \(Y - I \) allows also to retrieve the relative price of consumption.
In this theoretical framework, whenever entrepreneurs perceive investment as more (less) expensive, the model economy experiences a sudden decrease (increase) of investment expenditure that pushes unemployment upwards (downwards). As a consequence, this setting provides a straightforward formalization for how the credit crunch, i.e., the dramatic worsening of firm access to bank credit experienced over the financial crisis, translated into job losses across US industries (c.f. Haltenhof et al. 2014). Moreover, lower (higher) investment depresses (boosts) capital accumulation by reducing (rising) the wealth of households. As in Farmer (2013), this on turn triggers a negative (positive) wealth effect that leads to a decrease (increase) in private consumption. As a consequence, this model seems to have the potential to provide a more comprehensive rationale of the consumption-investment patterns observed during the Great Recession without neglecting capital accumulation.

4 Quantitative implications of the model

In this section I explore some quantitative implications of the theoretical framework developed in sections 2 and 3. First, I provide a suitable model calibration. Moreover, I analyse the long-run behaviour of the model economy by deriving the properties of steady-state equilibria. In addition, I discuss the reliance of different business cycle drivers.
4.1 Calibration

The model is calibrated in order to be consistent with US quarterly figures. Specifically, the capital share, the discount factor and the depreciation rate of capital are set at the same values chosen by Kydland and Prescott (1982) in their real business cycle contribution. Moreover, the parameters of the employment evolution law are fixed according to the JOLT-based estimations retrieved by Shimer (2005). In addition, the equilibrium value of productivity shocks is normalized to one while the corresponding figure for matching shocks is set in order to convey a social optimal unemployment rate equal to the historical unemployment rate implied by the data reported in table 1, i.e., a point value of 5.84%.

The whole set of parameter values is collected in table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital share</td>
<td>α</td>
<td>0.640</td>
</tr>
<tr>
<td>Discount factor</td>
<td>β</td>
<td>0.999</td>
</tr>
<tr>
<td>Capital depreciation</td>
<td>δ</td>
<td>0.025</td>
</tr>
<tr>
<td>Matching elasticity</td>
<td>θ</td>
<td>0.280</td>
</tr>
<tr>
<td>Job destruction rate</td>
<td>σ</td>
<td>0.100</td>
</tr>
<tr>
<td>Productivity shock</td>
<td>S</td>
<td>1.000</td>
</tr>
<tr>
<td>Matching shock</td>
<td>B</td>
<td>2.155</td>
</tr>
</tbody>
</table>

Table 2: Calibration

4.2 Properties of steady-state equilibria

The results in proposition 2 recall that for each eligible value of p_I there exists a unique meaningful steady-state level of (un)employment. Thereafter, given the solution for L, the steady-state values of all the other endogenous variables can be easily derived. Taking into account the parametrization in table 2, figure 3 tracks the steady-state relationships of GDP, consumption, investment and their relative price over the range of employment rates observed over the last sixty years (dotted lines represent planning optimum).

\[^{10}\]The implicit hypothesis for this numerical choice is that all over the concerned period, actual unemployment fluctuated around the value that would have been chosen by the social planner whose behaviour is described in section 2.

\[^{11}\]The MATLAB code to derive the panels of figure 3 is available from the author.
All over the past sixty years the US unemployment rate ranged from a minimum value of 2.57%, reached in the second quarter of 1953, to a maximum value of 10.66% achieved in the forth quarter of 1982. The diagrams in figure 3 reveal that along the range of observed unemployment the cyclical co-movements of the theoretical values of GDP, consumption and investment is fairly consistent with the figures of the correlation matrix in table 1; indeed, counter-cyclical patterns appear only when unemployment falls below 3%, a figure lower than the planning optimum that is not so recurrent in actual data.

4.3 What is the driving force of business cycles?

Farmer (2012a-b, 2013, 2014) and the other backers of the finance-induced recession mentioned in the introduction convincingly argue that the stock market crash of 2008 triggered the subsequent macroeconomic downturn. On a closer inspection, the transmission mechanism of beliefs shocks implied by the model outlined in section 3 can easily support this view; indeed, circumstantial evidence analyzed, inter alia, by Fama (1981) and Barro (1990) shows that there is a quite strong positive relation between stock market prices and corporate investment. Obviously, this relation suggests that increases (decreases) in asset market values may lead entrepreneurs to perceive investment as less (more) costly in a self-fulfilling manner. This, on turn, will increase (decrease) their willingness to hire.\footnote{A similar relation among asset prices, investment and employment have been found by Zoega (2009) in many OECD countries.}

Figure 3: Steady-state relationships
On an empirical perspective, this conjecture is corroborated by the negative relation observed between the relative price of investment and the deflated S&P500 index over the last sixty years depicted in figure 4.\(^{13}\)

![Figure 4: Asset prices and the relative price of investment (1957-2012)](image)

The diagram in figure 4 shows that asset prices and the relative price of investment are linked by a clear-cut negative relation all over the period under examination; indeed, the linear regression line has a slope of -32.90 with a standard error of 0.90. As a consequence, given the strength of such a relation, the model developed in section 3 appears consistent with business cycles driven by self-fulfilling asset price movements.

5 Concluding remarks

In this paper I introduce investment and capital accumulation in the theoretical setting developed by Farmer (2013). Specifically, I build a demand-driven search economy in which households decide their optimal trajectory for consumption while, at the same time, firms decide about optimal recruiting effort as well as the optimal trajectory for productive investment (c.f. Jorgerson 1963, Abel and Blanchard 1983 and Chirinko 1993).

\(^{13}\)On the one hand, the relative price of investment is built by dividing the price index of gross private domestic investment by the GDP deflator such as provided by the Bureau of Economic Analysis. On the other hand, the S&P500 index is retrieved by removing seasonal patterns and deflating the figures provided by the Federal Reserve Bank of Saint Louis. See www.research.stlouisfed.org.
Given the presence of search frictions, closing the model with market clearing in the assets and goods markets leads to a non-linear system in which there is one more unknown than equations. In the present proposal, such an indeterminacy is solved by assuming that entrepreneurs form self-fulfilling expectations about the relative price of investment.

In this setting, I show that whenever entrepreneurs perceive investment as more (less) expensive, the model economy experiences a sudden decrease (increase) of investment expenditure that pushes unemployment upwards (downwards). Moreover, lower (higher) investments depress (boost) capital accumulation by reducing (rising) the wealth of households. This on turn triggers a negative (positive) wealth effect that leads to a decrease (increase) in private consumption. As a consequence, this framework seems to have the potential to provide a more comprehensive rationale of the consumption-investment patterns observed during the Great Recession.

From a quantitative point of view, I show that long run behaviour of the model economy is consistent with the observed co-movements of GDP, consumption and investment. Moreover, I provide evidence that the transmission mechanism of belief shocks implied by the present theoretical framework appears quite consistent with business cycles driven by self-fulfilling asset price fluctuations.

Appendix

In what follows, I provide the formal proofs for propositions 1 and 2.

Proof of proposition 1

In steady-state, the Euler equation for recruiters and employment dynamics holding in social planner’s problem imply that

$$\frac{S\Phi^a\Psi^{1-\theta}}{\theta BC} = \frac{\beta S\Phi^a}{C} \left(1 + \frac{(1-\sigma)\Psi^{1-\theta} - (1-\theta)B\Psi}{\theta B} \right) \tag{A1}$$

$$V = \left(\frac{\sigma L}{B(1-L)^{1-\theta}} \right)^{\frac{1}{\theta}} \tag{A2}$$

Straightforward algebra reveals that (A1) is equivalent to eq. (16). As a consequence, recalling that $\Psi \equiv V(1-L)^{-1}$ and denoting by $\hat{\Psi}$ the positive solution of (A1), the equilibrium level of employment is obtained by combining $\hat{\Psi}$ with (A2) as conveyed by eq. (15). Thereafter, the equilibrium levels of capital and consumption can be derived, respectively, from the steady-state versions of eq.s (9) and (11).
Proof of proposition 2

On the one hand, in steady-state, the Euler equation for corporate investment and the capital accumulation path are given by

\[p_I = \beta (\alpha S \Phi^{\alpha-1} + p_I (1 - \delta)) \quad \text{(B1)} \]

\[K = I + (1 - \delta)K \quad \text{(B2)} \]

Since \(\Phi \equiv K (L - V)^{-1} \), eq.s (B1) and (B2) imply that

\[I = \delta \left(\frac{\alpha \beta S}{p_I (1 - \beta (1 - \delta))} \right)^{\frac{1}{1 - \alpha}} (L - V) \quad \text{(B3)} \]

On the other hand, the equilibrium Euler equation for recruiters and the wealth accumulation path can be written as

\[\frac{(1 - \alpha) S \Phi^\alpha}{q} = \beta \left((1 - \alpha) S \Phi^\alpha \left(1 + \frac{1 - \sigma}{q} \right) - w \right) \quad \text{(B4)} \]

\[A = (1 + r) A + wL - \tilde{C} \quad \text{(B5)} \]

Considering the results in eq.s (41) and (B2) as well as the market-clearing condition for assets in eq. (37), eq. (B5) implies that

\[\tilde{C} = \frac{I (1 - \beta)}{\beta \delta} + wL \quad \text{(B6)} \]

Moreover, taking into account the definitions \(\Phi \) and \(q \) and the result in eq. (B2), eq. (B4) leads to

\[w = (1 - \alpha) S \left(\frac{I}{\delta (L - V)} \right)^\alpha \left(1 - \frac{1 - \beta (1 - \sigma)}{B \left(\frac{V}{1-L} \right)^\theta \beta} \right) \quad \text{(B7)} \]

Plugging the results in eq.s (B3), (B6) and (B7) into the market-clearing condition for the goods market in eq. (38) taking into account the result in eq. (A2) allows to derive the hyperbolic expression in eq. (45). Furthermore, the steady-state value of the shadow value of employment in eq. (51) follows immediately from the respective equilibrium Euler equation.
References

