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Abstract

We investigate the causal effect of air pollution on work accidents in Italy, a wealth
country with strict environmental regulation. We employ unique administrative data on
work accidents at daily frequency and detailed information on workers’ location merged
with air pollution concentrations. The causal identification of the effect is obtained by
instrumenting air pollution with heating periods in specific municipalities and dates. We
estimate that a ten unit increase in the Air Quality Index results in a 8.6% increase in the
number of accidents. We do not find any effect of air pollution on the intensive margin,
i.e. accident-related disabilities. Our results imply that, even at moderate air pollution
concentrations, the safety of workers is not only under direct competence of employing and
polluting firms but extents to the surrounding economy as a whole, affecting the public
domain.
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1 Introduction

Air pollution is an important risk factor for human capital development (Dominici et al.,

2014; Zivin and Neidell, 2018). While early empirical studies focused on mortality and mor-

bidity effects, more recent evidence has showed that short-run fluctuations in air pollution

concentrations produce more subtle effects, impairing labor supply (Hanna and Oliva, 2015),

on-the-job productivity (Graff Zivin and Neidell, 2012; Chang et al., 2016; He et al., 2018),

human behavior (Bondy et al., 2018), concentration and cognitive ability (Ebenstein et al.,

2016; Zhang et al., 2018; Sunyer et al., 2017). These subtle effects have been shown to produce

sizable costs in terms of economic growth and health expenditures. Yet, there could be other

hidden impacts to explore that can be economically relevant.

In this paper we investigate for the first time the causal effect of air pollution on work

accidents, a key outcome for the labor market. Building on recent literature, we conjecture

that if air pollution reduces concentration and increases fatigue, workers exposed to bad air

quality are more likely to make mistakes and, as a consequence, they are more likely to

experience work accidents. We test this hypothesis using a unique administrative dataset

containing the universe of daily accidents occurred in eight Italian regions from 2014 to 2018.

With these data we analyze the effect of air pollution on the number of accidents and, since

workers typically pay more attention when performing riskier tasks (Barnes and Wagner,

2009) and we also observe the severity of the accidents (disabilities and deaths), we also test

whether air pollution produce differentiated effects.

Work accidents represent an important dimension of the labor market. In Europe the inci-

dent rate is about 1500 per 100,000 workers, with a stable trend in the previous years. These

figures generate a substantial amount of social welfare expenditures and produces a loss of

human capital and job skills, which in turn affect both economic and social development (Pou-

liakas and Theodossiou, 2013). According to recent estimates from the International Labor

Organization (ILO), work-related injuries and illnesses result in the loss of 3.9% of all work-

years globally and 3.3% of those in the European Union, equivalent to a cost of approximately

2,680 billion and 476 billion, respectively.1 Despite the relevant economic implications, previ-

ous studies have investigated only the causes of accidents within the workplace environment

(Galizzi, 2013), while the role of air pollution–a diffused externality that all workers face every

day–remains virtually unknown.
1Cost to society in terms of disability adjusted life years (DALY) rate (years per 100,000 workers) and

in terms of contribution to work-years lost expressed as percentage equivalent of total GDP (%). Source:
https://visualisation.osha.europa.eu/osh-costs/, accessed on April, 9 2020.
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Estimating the causal impact of air pollution on work accidents represents an empirical

challenge for several reasons. First, fluctuations in air pollution concentrations may co-vary

with economic activity. For instance, a sudden increase in the economic demand may induce

workers to be more productive and to work faster, increasing the probability of accident.

At the same time, if workers produce more, they pollute more. To address this problem,

we instrument air pollution with winter heating, which produces differential shocks in air

pollution in specific municipality-period combinations without directly affecting the labor

market. Our pollution measure consists in a four-pollutant Air Quality Index (AQI); this

approach allows to capture independent effects of any single pollutant in the IV setting while

reducing collinearity due to a multi-pollutant model approach (Dominici et al., 2010; Chang

et al., 2018).

A second important identification challenge is that individuals differ for characteristics that

are often unobserved to the econometrician, such as different predetermined health status,

defensive investments or strategic behavior that may induce workers to sort into less polluted

places or low pollution periods (Deschenes et al., 2017; Chang et al., 2016, among others). To

mitigate these biases, we benefit of the unique features of our data; our identifying variation

exploits high-frequency (day-by-day) fluctuations in air pollution within the municipality. In

addition, we consider only accidents at the workplace during working days, controlling for

holidays, strikes and weather conditions. By doing so, we estimate the effects in a setting

where strategical sorting is negligible.

Our results show that a ten unit increase in the AQI (about a half s.d.) causes 0.22 additional

accidents, approximately a 8.6% increase. We find no effects on disabilities. Our estimates

are robust to different model specifications and robustness checks.

2 Data

2.1 Work-accidents data

In Italy work-related accidents (henceforth WRA) are defined as external traumatic events

on the job that cause an injury (Legislative Decree 38/2000). The injury leads to temporary

work disability (at least 3 working days lost), permanent work disability (complete or partial),

or death. All Italian workers must be insured against WRA through the National Institute for

Insurance against Accidents at Work (INAIL).2 The mandatory enrollment in INAIL ensures
2INAIL is a public non-profit administration safeguarding workers against physical accidents and occupa-

tional diseases. For further information, visit: https://www.inail.it
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that all the Italian WRA are recorded. Moreover, INAIL registers an accident no matter

how the information is collected, e.g. through newspaper, limiting the possibility of losing

information for undeclared workers.3

We obtain data for any accident occurred between 2014 and 2018 in eight Italian regions

(5201 municipalities): Lombardia, Veneto e Piemonte (North), Toscana and Lazio (Center),

Campania, Puglia and Sicilia (South). This initial sample consists of about 2.1 million events

(about 420,000 each year) and covers approximately 65% of the total number of work acci-

dents in Italy during that period. The WRA data provide a richness of information which can

be divided in three groups: worker’s characteristics (worker identifier, age, sex, nationality

and birth municipality); employer’s characteristics (employer’s identifier, type of insurance,

economic sector); accident’s characteristics (date and municipality of event, severity of acci-

dent including death, accident on the job or in itinere, accident with or without transport

means, degree of disability, compensation premium, no. of compensated days).

We restrict our sample to accidents occurred to individuals with working age, which we

conventionally define as 16-67 years and to singleton events occurred at the workplace.4 After

this restriction, we obtain about 1.5 million observations. Since data provide worker’s location

at municipality level, we collapse the data by worker’s municipality × day of event to ease

the computational burden and to account for the fact that our identifying variation occurs at

municipality (Isen et al., 2017); this procedure leads to a total of 874,328 observations (i.e.

municipality × day-of-event cells).

Figure 1 presents the distribution of accidents and disabilities across economic sectors and

individual characteristics of injured workers such as age class, gender and nationality. Panel

a) shows that work accidents not only occur in traditionally risky sectors such as construction,

manufacturing and transport, but unexpectedly they affect also less risky sectors, stressing the

importance of using universal administrative data. Nevertheless, traditional risky sectors show

a higher number of disabilities. Panel b) shows how accidents and disabilities are distributed

across different age classes; both are lower in younger individuals. Finally, panel c) shows

that both accidents and disabilities are more likely to occur to men, and to domestic workers

(panel d)).

Figure 2 shows the distribution of accidents across months and day of the week. Accidents

occur in any month of the year, with a substantial drop in August, the typical period of summer
3According to Eurostat “the data available from INAIL is very rich and suitable to analyze accidents at

work, both in terms of variables investigated and number of recorded observations.”
4We exclude in itinere events since these mainly constitute traffic-related accidents and their analysis goes

beyond the aim of this paper. For a recent investigation of the effect of road-safety and air pollution see Sager
(2019).
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holidays in Italy. Within days of the week, the number of accidents is slightly decreasing from

Monday (the highest number of occurrences) to Friday; the lowest number of events occur on

Sunday and, to a letter extent, on Saturday.

2.2 Environmental data

Air pollution data come from the European Air Quality Database (Airbase), which collects

information on hourly concentrations registered by monitoring stations.5 We collect concen-

tration data for four pollutants, PM10, CO, NO2 and SO2.6

Depending on which pollutant is considered, the number of monitoring stations varies across

space and time, as some municipalities installed stations after the introduction of more strin-

gent regulations on air quality and monitoring stations could not operate continuously. Since

our period of analysis refers to recent years, we have a high number of operating monitors

for each pollutant. Moreover, the collected data show at least 95% of correct readings in

the period of analysis, which limits concerns about the endogeneity of monitor “births” and

“deaths” (Bharadwaj et al., 2017). As in the case of WRA, we collapse air pollution data to

municipality × day cells. For municipalities with more than one monitoring station, we assign

the average pollution concentration registered in all the monitoring stations belonging to that

municipality. With these concentration data we compute an air quality index (AQI) following

the indications provided by the EEA. The AQI is a well-known indicator to measure the air

quality in a multi-pollutant setting (Dominici et al., 2010; Cheng et al., 2007; Chang et al.,

2018), allowing to account for the independent effect of any single pollutant included in the

index. For PM10, NO2 and SO2, we calculate the AQI according to the EEA’s indications,

while for CO we follow the indication provided by the Environmental Protection Agency of

the United States (US EPA) since the European AQI does not provide guidelines for CO.7

The AQI computed with this procedure assumes values from 0 to 500 and over.

Because weather factors can independently affect worker’s productivity (Deschênes et al.,

2009) and the likelihood of work accident (Schifano et al., 2019), we include a full set of weather

data available on a daily basis (Gridded Agro-Meteorological Data—GAMD). GAMD data

are provided on a regular grid of approximately 20×20 km and cover all the municipalities for
5The Airbase database is maintained by the European Environmental Agency (EEA) through the Euro-

pean topic center on Air Pollution and Climate Change mitigation. It contains air quality data delivered
annually under the 97/101/EC Council Decision, establishing a reciprocal exchange of information and data
from networks and individual stations measuring ambient air pollution within the member states.

6We exclude O3 and PM2.5 since PM2.5 is highly correlated with PM10 and is monitored only by few stations,
while ground-level O3 is a highly seasonal pollutant and its formation process in the atmosphere depends on
chemical reactions between NO2, other compounds and sunlight.

7The complete AQI formula and calculation procedure is reported in Appendix.
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which WRA data are available. We select maximum and minimum temperatures expressed in

degrees Celsius (°C), wind speed expressed in m/s and total precipitation expressed in mm,

computing daily measures at administrative municipality level following the same procedure

described above for pollution data.

We match the WRA data with air pollutant concentrations and weather data, which leads

to a final sample of 91,500 observations as identified by municipality × day cells for a total

of 51 municipalities. Following Knittel et al. (2016); Moretti and Neidell (2011); Chay and

Greenstone (2003), we extend this initial sample of municipalities with pollution stations to

neighboring municipalities within a 18 km radius from each monitor’s centroids. For mu-

nicipalities where stations are present, we assign the original concentration measure, while

for neighboring municipalities we weight the concentrations by the inverse distance. With

this procedure, our final sample ranges from roughly 89,358 to 464,276 observations, respec-

tively including 51 municipalities with stations, and 1857 municipalities in the most extended

version.

Table 1 shows summary statistics for the relevant variables, while Figure 3 shows the geo-

graphical distribution of municipalities with monitoring stations (blue areas) and those of the

extended sample up to 18 km (green areas). Even though our sample includes a relatively

small fraction of the total municipalities for which we have accidents data, from this figure

we observe that it is not affected by geographical sorting.

2.3 Additional data

We retrieve data on national holidays from the Italian Government website, and on single-day

general strikes or transportation strike from the Italian strike commission and the Ministry

of Infrastructures and Transport. We also collect population data from ISTAT, restricting to

individuals between 16 and 67 years. Although this measure is affected by some limitation, it

represents our best approximation of the active population in absence of more specific data.

Summary statistics for these additional variables are reported in Table 1.

3 Econometric Framework

3.1 Baseline model

Our goal is to estimate the impact of air pollution on work-related accidents. We begin our

econometric analysis by estimating the following fixed effects model:
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Yct = α+ βAQIct + W′
ctγ + µc + Tτ + εct (1)

where the outcome Yct represents, respectively, the number of accidents and disabilities reg-

istered in the municipality c in day t; AQIct is the AQI, which is our indicator of air quality;

Wct contains a set of adjusting variables, namely individual characteristics of workers who

underwent accidents (age, gender, and immigrant status), firm characteristics where the ac-

cident happened (NACE code), weather characteristics when the accident happened (up to

fourth degree polynomials in minimum and maximum temperature, precipitations and wind

speed) and dummies for national holidays and general strikes; finally, a distinctive feature of

our model is a rich set of controls for unobserved heterogeneity like seasonal fixed effects (i.e.

year, month, and day of week, denoted Tτ ) and municipal fixed effects (µc); εct represents

an idiosyncratic error term. We also estimate a more demanding specification which includes

an additional set of province × month-by-year fixed effects to account for differential growth

trends. The coefficient of interest is β, which is the effect of one unit increase in the AQI

on the outcome: a positive coefficient implies that as the air quality deteriorates the num-

ber of accidents/disabilities increases. Standard errors are robust to heteroschedasticity and

clustered at province level (Wooldridge, 2003; Bertrand et al., 2004).

3.2 Quasi-experimental setting

Though the fixed effects included in model 1 purge a substantial part of time-invariant un-

observed heterogeneity, the resulting estimates may still be biased. More intense economic

activity in some geographical areas and days may co-vary with more intense air pollution

release, leading to biased estimates. For instance, a sudden increase in the economic demand

may induce workers to be more productive and to work faster, increasing the probability of

accident. At the same time, if workers produce more, they pollute more. Similarly, if workers

behave strategically and avoid high polluted days, the estimated effect of pollution from stan-

dard fixed effects model will be biased. In addition, the assignment of pollution exposure to

workers may be imperfect as we move away from monitors; in this case fixed effects estimates

would be upward biased. Therefore, it is difficult to establish a priori the direction of this

bias. To purge from these possible sources of endogeneity we exploit an instrumental variable

(IV) approach, using winter heating rules.

In numerous countries, winter heating both in private and public buildings is regulated by

specific laws to reduce harmful emissions released from heating devices, especially traditional
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ones such as gas boilers and wood-burning and pellet stoves.8 This feature has been recently

exploited in a RDD setting by Fan et al. (2020) to analyze the effect of air pollution on mor-

tality in China, a country with massive use of coal-based heating. Event though Italy benefits

of more advanced heating technologies, fossil fuels still play the lion’s share in the energy

sources for residential heating. Natural gas and biomass represent approximately 85% of the

total fuel, while cleaner sources such as electricity covers only 5% of the energy mix (ENEA,

2017). Therefore, winter heating results in a massive release of several harmful emissions

during winter since burning natural gas and other fossil fuels generate several pollutants such

as CO, NO2 and PM10.

In our setting, winter heating scheme consists in a classification of municipalities in six

climate areas, each one characterized by specific periods in which winter heating is allowed.

For instance, municipalities classified in the climate area “A” are characterized by warmer

temperature in winter and therefore are allowed to start heating only from December 1 to

March 31, while municipalities classified as “F” are allowed to start heating in any day of

the year due their severe and longer winter conditions. Figure 4 shows the map of in-sample

municipalities classified according to the six climate zones, while Table A1 reports the share

of in-sample municipalities across zones. Only 2.3% of municipalities belong to warm climate

zones (A and B), where winter heating is allowed only from December to March. About 24%

of municipalities is characterized by a longer winter, with heating allowed from November to

early April (zones C and D), while the largest group is allowed to anticipate winter heating,

which goes from mid October to mid April (zone E). Only 5% of municipalities is allowed to

start heating in any day of the year (zone F).

Due to its regulation, winter heating produces differential shocks in air pollution concen-

trations in specific municipality-period groups while it does not affect the labor market and

the firms’ production processes. This represents an ideal IV in our setting since we can plau-

sibly assume that work accidents do not significantly change during winter heating if not for

heating-induced pollution shocks, once we control for weather factors. Controlling for weather

is particularly important in our quasi-experimental setting; even though our IV captures both

central heating systems (serving multiples homes) and independent heating systems (serving

only one home), it could be possible that during severe cold conditions individuals with inde-

pendent heating systems activate heating in advance, against the heating rules. Conversely,

it could happen that if temperatures are mild during periods in which winter heating is al-
8In Italy, winter heating is regulated by the Presidential Decree Law no. 412/1993. Exceptions on this law

are allowed only in case of exceptional climate conditions, by a specific Municipal law, and for a daily duration
that must be lower than the half of that normally allowed.
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lowed, individuals prefer not to activate heating. While we cannot explicitly observe these

behaviors in our data, by accurately controlling for weather factors we rule out most of the

weather-driven variation in air pollution, strengthening our exclusion restriction We estimate

the following model by means of 2SLS:

AQIct = α+ λD(Heat)ct + W′
ctγ + µc + Tτ + εct (2)

Yct = α+ βÂQIct + +W′
ctγ + µc + Tτ + ηct (3)

where D(Heat)ct is an instrumental dummy variable equal to 1 when the winter heating starts

in each municipality-period group according to the six climate zones reported in Table A1

and ÂQIct is the first stage predicted value of AQIct .

4 Results

In this section we present the main results, with additional checks discussed in Section 5.

To begin with, the first stage results (see Appendix Table A2) indicate that winter heating

generates substantial pollution shocks, increasing the AQI of approximately 1.5 units. This

effect increases to 2.2 units (approximately a 10%) when controlling non-linearly for weather

factors and province× year-month fixed effects.9

Table 2 and Table 3 report, respectively, estimates of the effects of air pollution on the num-

ber of accidents and disabilities. Each table includes both OLS-FE and 2SLS estimates and

control for share of females, 5-year age classes, share of foreign workers and economic sectors

(ATECO 1 digit). Non-linear controls for weather includes up to fourth degree polynomials

in minimum and maximum temperatures, precipitations and wind speed. Moreover, columns

(2) and (4) include additional province× year-month fixed effects. We cluster standard errors

are clustered on provinces to account for dependencies in pollution shocks and labor market

characteristics (Wooldridge, 2003; Bertrand et al., 2004).

OLS estimates are substantially lower of approximately 50% than 2SLS coefficients. This

is not surprising since since simple OLS estimates suffer from multiple sources of endogeneity

bias (see Section 1) (Deryugina et al., 2016; Sager, 2019). In the most demanding specification

(column 4) the 2SLS coefficient is 0.22, corresponding to an increase of approximately 0.86%

in the number of accidents for a one unit increase in the AQI. This coefficient is fully significant
9These comments refer to the sample for accidents. The results obtained when analyzing the effect on

disabilities, based on a smaller sample, are larger (see column (4) of Appendix Table A2.
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but much smaller than the one obtained without controlling for province-specific seasonality

(column (3)).

5 Robustness checks

Avoidance behavior – In analyzing the effect of air pollution on humans, avoidance behavior

represents a serious concern (Neidell, 2009; Moretti and Neidell, 2011; Knittel et al., 2016;

Deschenes et al., 2017, among others). Individuals may adjust their exposure in response

to changes in air pollution or adopt differential compensatory behavior, as for instance, by

reducing the time spent outdoors. Nevertheless, the extent to which avoidance behavior affects

the estimates depends also on the nature of the outcome analyzed and, more generally, on the

nature of data employed. Event though we do not have information on workers’ position in

days before the accident, we directly observe their location (municipality) on the day of event.

By excluding in itinere events, our sample includes only accidents occurred at the workplace.

More importantly, we can plausibly assume that employed workers have hardly any option

to adjust their location or postpone their tasks in response to changes in air pollution, at

least on a daily basis. Since we employ daily data with events registered at the workplace,

the endogeneity bias due to avoidance behavior is potentially very low.10 Regarding possible

omitted information on the predetermined health status of workers, even though we do not

have explicit information on this, again we can assume that if a worker is present at the

workplace on the day of accident, she is plausibly in a relatively good health status to carry

out standard work tasks.

Independent effects of temperature – Temperatures may significantly alter the effect of

air quality on work accidents. To address this important concern, we estimate a differences-in-

differences (DiD) model to compare the effect of winter heating in cities with cold temperatures

(treated) and with warm temperature (controls) during a time window t = {−5; +7} days,

with t = 0 being our pre-post variable, i.e. the day in which winter heating starts in any

municipality. The DiD estimates presented in Appendix Table A3 reveal that when temper-

atures are colder, the effect of air pollution induced by heating does not significantly differ

between treated and control groups.

The DiD results are further confirmed by another test presented in Figure 5, which shows the

effect of minimum temperature on work accidents in cities with and without winter heating
10We cannot exclude, however, a differential response to air pollution in terms of defensive investments. For

instance, we cannot observe in the data if, on high pollution days, some workers adopt specific devices to
protect them.
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using Regression Discontinuity (RD) estimates with cutoff set at 0 degree Celsius. Notice

that these correlations already include controls for sample composition (age, sector etc.),

other weather factors, and municipality fixed effects. When temperatures are low (around or

even below the 0 cutoff) and winter heating is on (red line) there is no effect of temperature

in affecting work accidents. Conversely, when temperatures are low but winter heating is off

(blue line), the overall number of accidents is lower and there is a clear discontinuity around

the 0 cutoff, since ice formation increases the risk of accidents.

Weighting – [Table to be included] To test the validity of our results, we also run our

estimates using weights for the number of individuals living in each municipality-year cell.

Even thought weighting by total population and year does not represent the best option, we

do not have alternative data that allow to observe the exact number of individuals working

in any municipality and day. Considering this limitation, our weighted estimates yield very

similar results to those obtained without weights.

6 Conclusion

In this paper we find that air pollution, a diffuse externality, affects the labor market by

increasing the number of work accidents. Since air pollution mostly depends on the economic

activity, and productivity shifts can also affect air pollution concentrations even at a daily

frequency, we exclude this important confounding channel by instrumenting for air pollution

using winter heating rules. Even though we cannot provide with the data at hand a direct

evidence of the mechanism through which air pollution increases the number accidents on

the job, recent contributions highlight that air pollution, especially CO and PM10, can alter

concentration and mental alertness (Künn et al., 2019; Sager, 2019; Graff Zivin and Neidell,

2012). Moreover, these effects are contemporaneous and can also occur for daily fluctuations

in air pollution. Therefore, a plausible explanation of our results is that workers exposed to

higher pollution concentrations are likely to reduce their concentration and cognitive ability,

resulting in a higher risk of accident on the job.

Our findings convey important implications for both firms and policy makers. Since firms

and public administrations already sustain an “optimal” cost for workers’ insurance against

the risk of work accidents, if air pollution is found to increase this risk for factors that are

beyond the control of the employers, it results that some workers could be sub-optimally

insured.
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Figure 1: Accidents and disabilities by economic sector, age class, nationality and gender.
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Figure 2: Accidents and Disabilities Across Months and Day of Week
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Figure 3: Geographical location of municipalities with CO monitoring stations.
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Municipalities with stations
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Notes : The figure shows the Italian municipalities where CO stations are present in the eight regions of
analysis (blue areas) and municipalities within a 15 km radius from CO stations (green areas). Source: own
elaboration based on the AirBase database.
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Figure 4: Geographical distribution of in-sample municipalities by climate zone.
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Notes : The figure shows the in-sample municipalities classified by six climate zones (from A to F). Each
climate zone is characterized by a different period in which winter heating is allowed. Source: own elaboration.
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Figure 5: Correlation between accidents and min. temperature with/without winter heating
in an RD setting.

Notes : The figure is obtained using the binscatter Stata command by Michael Stepner (see
https://michaelstepner.com/binscatter/). Source: own elaboration using Agri-4-cast and INAIL data.
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Tables

Table 1: Summary Statistics

Variable Mean s.d.

Accidents 2.068 4.603
Disability 0.240 0.712
Female 0.298 0.414
Foreign workers 0.167 0.343
Age 21-25 0.070 0.234
Age 26-30 0.083 0.251
Age 31-35 0.095 0.267
Age 36-40 0.119 0.295
Age 41-45 0.141 0.317
Age 46-50 0.145 0.320
Age 51-55 0.137 0.313
Age 56-60 0.099 0.271
Age 61-67 0.045 0.189
AQI 9.812 15.096
Max. Temperature 19.851 8.205
Min. Temperature 10.496 7.203
Avg. Temperature 15.171 7.482
Wind speed 2.270 1.246
Total rainfall 2.362 7.268
Pop. (× 1,000) 35.926 137.154
Winter heating 0.349 0.477

Notes: Data are collapsed at municipality cells av-
eraged over the period 2014-2018. Sample size (at
12 km) is 324,773 across 1,488 municipalities.

Table 2: Estimates of the Effect of Air Quality on Work Accidents

Accidents

OLS IV

(1) (2) (3) (4)

AQI 0.011*** 0.012*** 0.059*** 0.022***
(0.003) (0.003) (0.018) (0.007)

Municip. FE x x x x
Year FE x x x x
Day of week FE x x x x
Holidays + strike x x x x
Non-linear weather x x x x
Province × year-month FE x x
N 324,774 324,773 324,774 324,773
Effective F-stat. 15,41 39.00

Notes: N refers to the sample at 12 km (accidents mean=2.54, s.d.=5.82). All regressions
control for share of females, 5-year age classes, share of foreigns and economic sectors (ATECO
1 digit). Non-linear controls for weather includes up to fourth degree polynomials in minimum
and maximum temperatures, precipitations and wind speed. Standard errors, in parentheses,
are clustered on provinces. * significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 3: Estimates of the Effect of Air Quality on Work Disabilities

Disabilities

OLS IV

(1) (2) (3) (4)

AQI 0.003** 0.003** 0.003 -0.003
(0.001) (0.001) (0.005) (0.005)

Municip. FE x x x x
Year FE x x x x
Day of week FE x x x x
Holidays + strikes x x x x
Non-linear weather x x x x
Province × year-month FE x x
N 65.255 65.180 65.255 65.180
Effective F-stat. 15,43 31,08

Notes: N refers to the sample at 12 km (disability mean=1.44, s.d.=1.41). All regres-
sions control for share of females, 5-year age classes, share of foreigns and economic sectors
(ATECO 1 digit). Non-linear controls for weather includes up to fourth degree polyno-
mials in minimum and maximum temperatures, precipitations and wind speed. Standard
errors, in parentheses, are clustered on provinces. * significant at 10%; ** significant at
5%; *** significant at 1%.
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Appendix

Table A1: Municipalities by Climate Zone

Climate Zone No. of Municipalities Share Start/End Heating Period

A 1 0.001 Dec. 1/ Mar. 15
B 32 0.022 Dec. 1/ Mar. 31
C 219 0.147 Nov. 15 / Mar. 31
D 139 0.093 Nov. 1 / Apr. 15
E 1022 0.687 Oct. 15 / Apr. 15
F 75 0.050 Any day

Notes: Sample size (at 12 km) is 324,773 across 1,488 municipalities.

Table A2: First Stage Estimates of the Effect of Winter Heating on AQI

First stage

Accidents Disability

(1) (2) (3) (4)

Winter heating 1.557*** 2.198*** 3.049*** 3.336***
(0.396) (0.352) (0.776) (0.598)

Municip. FE x x x x
Year FE x x x x
Day of week FE x x x x
Holidays + strikes x x x x
Municip. x year-month FE x x
Non-linear weather x x
N 324,774 324,773 65,255 65,180
F-statistics 15.41 39.00 15.43 31.08

Notes: N refers to the sample at 12 km (for column 1-2, AQI mean: 20.81, s.d.: 21.17, for column
3-4, AQI mean: 13.65, s.d.: 17.28). All regressions control for share of females, 5-year age classes,
share of foreign and economic sectors (ATECO 1 digit). Non-linear controls for weather includes
up to fourth degree polynomials in minimum and maximum temperatures. Standard errors,
in parentheses, are clustered on 54 provinces. * significant at 10%; ** significant at 5%; ***
significant at 1%.

Table A3: Differences-in-Differences Estimates

Winter Heating 0.084 0.072 0.114 0.088*
(0.078) (0.049) (0.079) (0.051)

N 10,245 10,216 10,245 10,216

Notes: All regressions include controls as in column (4) of Table 2. Stan-
dard errors, in parentheses, are clustered on 54 provinces. * significant
at 10%; ** significant at 5%; *** significant at 1%.
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