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Abstract

This work investigates the impact that changes in the exposure to robots had on

Italian local employment dynamics over the period 2011-2018. A novel empirical

strategy focusing on a match between occupations’ activities and robots’ applica-

tions at a high level of disaggregation makes it possible to assess the impact of

robotization on the shares of workers employed as robot operators and in occupa-

tions deemed exposed to robots. In a framework consistently centered on workers’

and robots’ activities, rather than on their industries, the analysis reveals for the

first time reinstatement effects among robot operators and heterogeneous results

among exposed occupations.
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1 Introduction

The effects of automation technologies on the economy have been the subject of a long

debate, dating centuries back and becoming popular again and again (Mokyr et al.,

2015). Recently, the discussion has received a boost by the influential contributions by

Brynjolfsson and McAfee (2011; 2014), who maintained that the pace of technological in-

novation and the introduction of ever more sophisticated technologies would have quickly

disrupted the labor markets as we know them. Two major strands of research have de-

veloped hereafter: the first one focusing on the identification of which occupations are

and prospectively will be more exposed to the introduction of robots and other forms of

innovative technologies (Frey and Osborne, 2017; Arntz et al., 2017; Manyika et al., 2017;

Dengler and Matthes, 2018; Nedelkoska and Quintini, 2018); the second one regarding the

impact that the introduction of automation in the past has had on workers, industries,

local labor markets and, in general, the economy (Acemoglu and Autor, 2011; Autor,

2015; Dauth et al., 2017; Graetz and Michaels, 2018; Autor and Salomons, 2018; Caselli

and Manning, 2019; Acemoglu and Restrepo, 2019; Blanas et al., 2020; Acemoglu and

Restrepo, 2020; de Vries et al., 2020; Klenert et al., 2020).

This work contributes to this lively debate by bridging these two strands of the litera-

ture and by providing some novel evidence on the impact of robot adoption on occupations

and workers, by focusing on the overlap between the specific activities carried out by the

different types of robots in the market and those characterising the various occupations.

Indeed, robots are not identical among themselves, and each one performs only a narrow

set of activities called, in jargon, robot applications.1 This is an important aspect to con-

sider because, following Autor et al. (2003)’s path-breaking intuition to appreciate the

impact of computers, it is what robots actually do that matters for their interaction with

different categories of workers. Accordingly, our analysis introduces three main novelties:

first, it matches occupations and robots on the basis of the activities characterising them,

thereby improving on previous contributions matching robots and workers on the basis

of the industry in which they are employed; second, it focuses on the evolution of local

employment in activity-based groups of occupations, rather than in broad occupational

groups (e.g., skilled/unskilled); third, it makes it possible to distinguish between robot

operators, that is workers who are involved in the design, installation, maintenance and

operation of forms of automation related to robotization (and whose activities cannot be

performed by any robot application), from workers who are deemed exposed to robots’

applications (or simply exposed workers), in that they perform specific activities that can

be matched with specific robot applications (e.g., welders and welding robots).

1See Pratt (2015) for a discussion of the relationship between technological developments and the
diversification and applicability of robotics.
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By developing a novel empirical methodology to classify occupations’ exposure to

robots, we deliver two innovative results. From the methodological viewpoint, we distin-

guish at a high (five-digit) level of disaggregation the robot operators from the workers

employed in exposed occupations, and we build a new measure of local exposure to robots

that is based on workers’ specific activities and robots’ applications rather than only on

industries (details in Section 2). From the empirical viewpoint, by exploring the regional

variation across Italian local labor market areas (LLMAs) during the period 2011-2018,

we assess the differentiated impact of local robots exposure on the employment dynamics

for robot operators and for those categories of exposed workers identified in terms of

their specific activities. To account for possible endogeneity issues, we control for several

potential confounding factors and we adopt a set of instrumental variables isolating the

exogenous changes in the supply of robots (as done by Acemoglu and Restrepo, 2020,

among others).

To preview our main findings, we show, for the first time, that the shares of local

employment of robot operators have grown more where the adoption of robots has been

more intense. This finding is consistent with the view that where firms invest more

in robots, the number of workers who take care of them and who perform activities

complementary to them also grows (Autor, 2015), a phenomenon that Acemoglu and

Restrepo (2019) define as a reinstatement effect. On the contrary, we fail to detect

significant changes either in the employment dynamics of the occupations exposed to

robots or in aggregate labor market outcomes (in line with Dottori, 2021). We also

provide some evidence that the failure to detect an average impact of robot adoption on

the dynamics of local employment of exposed occupations can hide heterogeneous effects

across professions. These findings help to explain the contrasting outcomes of aggregate

studies, that find either negative or no correlation between regional/industrial exposure to

robots and employment dynamics, and recent microeconomic studies that show a positive

relationship between robot adoption and employment at the firm level (Koch et al., 2021;

Dixon et al., 2020).2

It is worth noticing that, for a number of reasons, Italy represents an ideal case study.

To start, it is the second European country, after Germany, for robot use (Dottori, 2021).

Second, from a methodological perspective, we can take advantage of the 2013 Italian

National Institute for Public Policies Analysis (Inapp) Survey of Professions (Indagine

Campionaria sulle Professioni, Inapp ICP hereafter), that represents the Italian equiva-

lent of the American O*NET and provides information on the generalised tasks and the

2Other microeconomic studies find negative effects on firm employment once the spurious positive
correlation induced by demand effects is netted out (Bessen et al., 2020; Bonfiglioli et al., 2020), while
Acemoglu et al. (2020a) obtain contrasting results between adopters and non-adopters but with prevailing
negative effects due to the latter set of firms.
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specific activities and duties of over 800 five-digit level occupations in Italy by combin-

ing survey-based worker-level information and post-survey validation by experts’ focus

groups (more on this in Section 4). This ensures that our occupation-related variables

rely on a survey that is specifically tailored to the Italian occupational structure, avoiding

the problems associated with the use of imperfect crosswalk tables with the American

O*NET, which reflects the characteristics of the US labor market.3 Third, Italian local

labor markets are highly differentiated in terms of (industrial and occupation) employ-

ment composition (Garibaldi and Taddei, 2013) and quite heterogeneous in terms of labor

market dynamics over the last decade. This heterogeneity is particularly valuable given

that the empirical strategy relies on cross-regional variation to identify the parameters of

interest.

This work relates to three different strands of the literature. The first one includes

those studies exploring the consequences of automation and robot adoption on national

or local labor market outcomes. As mentioned above, due to the limited availability of

data on firm-level investment in robots, most studies have analysed macro- and meso-level

effects, thereby exploiting cross-country, cross-region, cross-industry or cross-occupation

variation in the empirical analysis. By exploiting the categorization of robots in terms

of the industry of adoption, in a seminal paper Acemoglu and Restrepo (2020) create a

shift-share measure of the local exposure to robot adoption in the US that combines the

national penetration of robots into each industry with the local distribution of employ-

ment across industries within each US commuting zone. Acemoglu and Restrepo show

that robots and other computer-assisted technologies negatively affected the US local

labor markets during the period 1990-2007. Additional analyses using this industry-

based approach to match robots and workers were subsequently conducted by Chiacchio

et al. (2018) on 116 NUTS2 regions of six Western European Union countries, Dauth

et al. (2017) on German local labor markets, Aghion et al. (2019) on French employment

zones, and Dottori (2021) and Paba et al. (2020) on Italian local labor market areas.

These studies fail to ascertain important effects of robot adoption on local labor dy-

namics, with the only exception of Aghion et al. (2019), who however focus on artificial

intelligence as well as robots.4

3Data collected through the Inapp ICP survey are post-validated by Inapp experts’ focus groups.
Although our work is the first to match occupations and robots on the basis of Inapp ICP, this survey
has been employed to discuss several other aspects of the Italian labor market, such as work-from-home
(Bonacini et al., 2021) and exposure to infectious diseases (Barbieri et al., 2020).

4Chiacchio et al. (2018) calculate industry-based shift-share measures of regional exposure to indus-
trial robots and find that its change between 1995 and 2007 produced minor negative effects in labor
market conditions. According to Dauth et al. (2017), robot adoption in Germany did not cause re-
markable job losses in the aggregate, even though it altered the sectoral composition of employment
away from manufacturing jobs (especially for young workers) towards the service sector. Aghion et al.
(2019) conclude that robotization over the 1994-2014 period reduced aggregate employment at the level
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In addition to the studies exploiting within-country regional variation of employment

dynamics and robots exposure, there exist a few industry-level cross-national studies

that are worth mentioning. In particular, Graetz and Michaels (2018) use data from

International Federation of Robotics (IFR) and EUKLEMS to estimate national robot

density in 14 industries and 17 countries from 1993 to 2007, and they conclude that

increased robot adoption had a positive effect on labor, total factor productivity and

wages, despite a negative impact on the low-skilled workers’ labor share.5

With respect to the studies adopting an industry-based match between workers and

robots, our analysis innovates in two main directions.

First, by introducing a manual match between occupations’ activities and robots’ ap-

plications, this work identifies specifically those occupations that are exposed to robot

applications, namely those in which the main activities performed by the worker overlap

with existing robots’ applications, and those professions (i.e., robot operators) that carry

out activities which are complementary to robot adoption. This improves upon previous

works analysing the employment dynamics of workers either differentiated in terms of

education/skill levels or pooled in broad groups of professions that differ in terms of their

relative intensity in routine, manual and cognitive tasks. In doing so, we make a contribu-

tion in opening the black box (to use Brandes and Wattenhofer, 2016’s expression) in the

classification of occupational groups with regards to automation/robotization.6 Second,

our methodological innovation makes it possible to build a new measure of local expo-

sure to robots that captures better the composition of the labor force in terms of those

activities that robots actually perform. The industry-based approach assumes that every

worker in every firm in an industry faces the same level of exposure to robots, regardless

of his/her actual activity in the company (and that the distribution of robots within an

industry is uniform across regions, conditional on the local employment shares). Our

novel approach accounts for workers’ heterogeneity within industries. Differently from

works focusing on industry-based measures, our approach makes it possible to disregard

those workers performing services within industrial companies (as in Autor and Dorn,

of employment zones in France. Focusing on Italy, instead, Dottori (2021) does not find robust empirical
support for any alleged effect of robots use on local employment dynamics.

5Other works reach divergent conclusions. Using EU Labour Force Survey data instead of EU KLEMS
data, Klenert et al. (2020) find no relationship between the increased use of robots and changes in total
employment levels or in the share of low-skill employment between 1995 and 2015 in 14 countries of
the European Union. Negative effects for employment are instead found by Compagnucci et al. (2019),
who focus on 16 OECD countries over the period 2011-2016, and Blanas et al. (2020), who investigate
the impact of software and robots on the within-industry share of routine workers in 10 high-income
countries over the period 1982-2005.

6Harrigan et al. (2016) show that a higher share of the professional groups of technically qualified
managers and technicians facilitates the adoption and use of new general technologies and, in turn, this
causes job polarization in France.
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2013).7

The second strand of the literature this works relates to those studies looking at the ex-

tent to which automation and computerization substitute workers in certain occupations.

The seminal article by Frey and Osborne (2017) calculates the exposure of US professions

to the risk of automation and computerization by building on the SOC/O*NET database

that codes several hundred job titles and offers a detailed description of their character-

istics, generalized tasks and specific activities. A number of scholars have applied Frey

and Osborne (2017)’s methodology on countries different from the US, thereby matching

the US O*NET occupations with the professions classified according to the Isco08 system

(see, for instance, David, 2017). Others (such as Arntz et al., 2017; Nedelkoska and Quin-

tini, 2018; Manyika et al., 2017) have modified Frey and Osborne (2017)’s methodology so

as to take into account the various tasks characterising the occupations, rather than a few

specific features. Although these works vary considerably in their quantitative findings,8

they concur in emphasising the importance of looking at occupations’ characteristics to

assess their exposure to technological advances.9 Notably, the studies in this strand of

the literature aim to identify what occupations are in principle most susceptible to au-

tomation and are not directed to produce measures of the local exposure to robots that

account for the actual extent of their adoption. Our work borrows from this literature

the idea of looking at workers’ activities, rather than at their industry of employment,

to measure the local exposure to robots. Yet, we do not stop at calculating the shares of

professions potentially exposed to robot applications, but we also build a new shift-share

measure of local exposure to robotization that takes into account i) the distribution of

local employment in terms of occupations, ii) a manual match between occupations and

robot applications in terms of their activities, and iii) the extent to which robots have

been actually adopted in the country.

Our focus on the main activities of individual professions connects this work to a third

strand of the literature that looks at skill-biased technical change (SBTC) (Katz and Mur-

phy, 1992; Katz and Autor, 1999; Acemoglu, 2002; Autor et al., 2006; Goos and Manning,

2007; Goos et al., 2009) and routine-biased technical change (RBTC) (Acemoglu and Au-

tor, 2011; Autor et al., 2003; Autor and Dorn, 2013; Autor et al., 2015; Goos et al., 2014).

7As we shall explain, if one had access to data capturing the universe of individual employment
conditions, one could go even further and build a measure of local exposure to robots that disregards
the industrial structure and is based exclusively on activities and tasks, thereby exploiting workers’
heterogeneity within and across firms.

8Arntz et al. (2017) find that only 9% of US jobs face a risk of automation above 70%, a far lower
value (about 38%) than that found by Frey and Osborne (2017). Nedelkoska and Quintini (2018) show
that about 14% of jobs in the OECD countries participating in PIAAC have a probability of automation
above 70% and about 32% between 50 and 70%.

9A recent strand of the literature investigates, along this line, the relationship between advancements
in Artificial Intelligence and tasks (Felten et al., 2018; Fossen and Sorgner, 2019).
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The works in this strand build on a canonical model that includes different groups of work-

ers performing imperfectly substitutable tasks, and where technological advances affect

different workers in different ways.10 While the SBTC account points to the (mis-)match

between technology advances and workers’ education, the RBTC approach focuses on

the complementarity or substitutability between the occupations’ tasks and the features

of the technical innovations, in a way that is close in spirit to our work. Autor et al.

(2015), for instance, distinguish the US occupations in routine and non-routine ones on

the basis of their tasks and show that long-term changes in the employment structure

of US commuting zones are not significantly associated with the initial specialisation in

routine-intensive occupations (suited to computerisation). Despite the common focus on

the heterogeneity of tasks across occupations, the studies adopting the RBTC approach

differ from ours in a few dimensions. First, these studies typically use the initial em-

ployment shares in routine occupations, that are suited to computerization, as the main

explanatory variable of employment and wage dynamics, whereas we match occupations

and robot applications to build a measure for the extent of robot adoption. Second,

RBTC studies emphasize the role of routine and non-routine tasks, whereas we consider

the main tasks and activities performed by each occupation, as these latter make it possi-

ble to match occupations with specific types of robots. Hence, our analysis mainly focuses

on the dynamics of occupations and narrow occupational groups that are directly asso-

ciated with robots, rather than generally interested by computerization and automation.

In sum, our novel matching approach leads to a new measure of local exposure to robots

that accounts for robots’ and occupations’ activities, for the employment composition of

the local workforce, and for the actual adoption of robots in the country, thereby bridging

all the strands of the literature mentioned above.

Finally, two recent articles share some of the features present in our analysis. Adachi

et al. (2020) exploit a dataset with information on quantities and unit values of robot

shipments by industry and application to study the impact of industrial robots on employ-

ment in Japan. These features allow them to build an identification strategy leveraging

the heterogeneous application of robots across industries (as in the studies mentioned

above) and heterogeneous price changes across applications. Their analysis (both at the

industrial and commuting zone levels) shows that the decline of robot prices in Japan

10According to the SBTC story, technological change affects negatively (positively) the less (more)
skilled workers, thereby exercising a monotonically increasing impact on the occupational structure in
terms of skills. The RBTC story, instead, focuses on the occupations’ tasks, and hinges on the idea
that occupations with routine-intensive tasks are negatively impacted upon by computerisation and
digitalization innovations. As routine tasks are typically performed by workers in manufacturing jobs
with middle-skill levels, the RBTC hypothesis helps to account for job polarization and between-industry
shifts in the structure of employment observed in the US and other advanced economies. For an overview
see Fernandez-Macias and Hurley (2016).
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increased the number of robots as well as employment, suggesting that robots and labor

are gross complementary in production. We share with their work the use of robot ap-

plications, albeit with a different identification strategy, and the positive effects of robot

adoption on employment.

On the other hand, de Vries et al. (2020) investigate the relationship between robot

adoption and the share of workers performing routine manual jobs across country-industry

pairs for 19 industries and 37 countries over the period 2005-2015. They focus on jobs’

tasks to distinguish 13 two-digit occupational groups into four task-based broad cate-

gories of jobs (i.e., analytic/manual and routine/non-routine), and analyze the differenti-

ated employment outcomes by exploiting the variation across country-industry pairs. A

somewhat similar approach has also been adopted by Blanas et al. (2020) in their analysis

of the impact of various kinds of capital on employment outcomes in European countries.

Our work differs from these studies not only for its regional, rather than national, focus.

More importantly, instead of focusing on the employment dynamics across broad

occupational categories and industries, we determine which occupations are exposed to

robots’ applications by matching such applications with five-digit occupations on the

basis of the main occupation-specific activities and we exploit such information to build

a measure of exposure at the level of local labor markets. An advantage of this approach

is that it makes it possible to exploit differences in the composition of occupations within

each industry, and this reduces the risk of picking up effects associated with unobserved

factors affecting industries.

The remainder of the paper is structured as follows. Section 2 discusses the con-

struction of our new measure of local exposure to robots based on the functional match

between occupations’ main activities and robots’ applications. Section 3 describes the

empirical strategy used to estimate the effects of the local exposure to robot adoption on

local labor markets. Section 4 offers details on the construction of our dataset and our

data sources. Section 5 presents and discusses the estimation results and introduces, as

a robustness check, the estimations that one would have obtained by using a traditional

industry-based approach. Section 6 discusses the employment dynamics of alternative

groups of occupations that share specific features. Finally, Section 7 provides some con-

cluding remarks.

2 A new activity-based measure of local exposure to robot

adoption.

Due to the scarcity of information about the number of robots installed by individual

companies, most applied economic analyses of the impact of automation on labor markets
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perform cross-regional examinations of the relationship between the local exposure to

robots and local employment dynamics.

The local exposure to robots, as explained in the Introduction, is typically calculated

on the basis of the combination of the national penetration of robots into each industry,

on the one hand, and the local distribution of employment across industries, on the

other. The application of this shift-share approach (à la Bartik, 1991) makes it possible

for researchers to allocate the national stocks/changes of robots in an industry across the

local areas on the basis of the local concentration of workers employed in that industry.11

This approach exploits the fact that the IFR classifies robots with respect to the industry

in which the companies purchasing them operate. Accordingly, after the seminal work by

Acemoglu and Restrepo (2020), the industry-based shift-share approach to build measures

of the local exposure to robot adoption has become popular (see, for instance, Chiacchio

et al., 2018; Dauth et al., 2017; Dottori, 2021).

While valuable, this industry-based approach presents some potential limitations.

First, it prevents from accounting for the high degree of firms’ and workers’ heterogeneity

within an industry, as it implicitly assumes that every worker in an industry is equally ex-

posed to robots, independently from the activities performed. Second, the industry-based

approach does not make it possible to differentiate workers who clearly operate on robots

from those which are exposed to their adoption. These limitations are at the core of ef-

forts to develop the methodology proposed by Frey and Osborne (2017), who calculate the

local share of occupations that are potentially exposed to automation/computerization,

in terms of the occupations’ title, tasks, activities and characteristics, rather than the

industry of employment.

It is worth noticing that the identification of the occupations exposed to robots á la

(Frey and Osborne, 2017) does not suffice to build a measure of the local exposure to

robots that accounts for the actual adoption of robots: the local shares of occupations

susceptible to robots do not contain information about the robots that have been actu-

ally installed over time in the country. Thus, while industry-based shift-share measures

of local exposure to robot adoption do not account for robots and workers heterogeneity

within industries, the local shares of occupations potentially exposed to robots neglect the

actual volume of robots purchased and installed over time. To account for the shortcom-

ings of these alternative approaches, in this work we develop a novel shift-share measure

of the local exposure to robot adoption that represents an activity-based alternative to

the shift-share measure focusing only on industries. By exploiting the (initial) local com-

11This approach mimics the methodology adopted by Card (2001) to redistribute national immigration
flows on the basis of the local composition of migrants in terms of the nationality of origin. In the
economic literature, proxies of the local exposure to trade competition in each industry have been built
along the same line (see Autor et al., 2013).
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position of the workforce in terms of exposed occupations (whose activities match those

performed by the different kinds of robot applications) within industries to allocate the

national stocks of robots actually purchased over time, we combine in a single measure

both the national penetration of robots with specific applications and the initial local

distribution of workers in terms of their actual activities.

Graetz and Michaels (2018) use the IFR robot taxonomy by application to assess

whether various groups of professions (at three-digit level) are replaceable by robots

(when the professions’ titles correspond to at least one of the robot applications) or

not. Then, they calculate the national shares of jobs considered as replaceable in each

industry and build a variable to instrument the industry variation in robot adoption.

While sharing the idea of matching of occupations’ activities and robots’ applications,

our empirical strategy differs remarkably from that proposed by Graetz and Michaels

(2018) along several dimensions. First, while they aim to identify the country-industry

shares of professions potentially replaceable by robots, we intend to build a shift-share

measure of local exposure to robot adoption that is able to account for the actual evolution

of the national stocks of robots. Moreover, our manual matching procedure to associate

occupations’ activities with robots’ applications is performed at the five-digit level of the

occupational taxonomy and is more sophisticated than that used by Graetz and Michaels

(2018), as they match robots and jobs at the three-digit level and only on the basis of the

jobs’ and applications’ titles. In Appendix C we illustrate a qualitative and quantitative

comparison between the classification of occupations based on the two approaches.

In a recent work, Webb (2020) develops a new method to construct a measure of

exposure of job tasks to automation based on the overlap between the text of job task

descriptions and the text of patents descriptions (i.e., the most frequent verbs and illus-

trative nouns extracted from robot patents). He calculates an exposure score for each

occupation that captures the intensity of patents directed towards the tasks in that occu-

pation. This method recalls both the approach used by Graetz and Michaels (2018) (based

on jobs’ and robots’ titles) and our activity-based methodology to match occupations and

robot applications. While both Webb (2020) and we focus on the activities performed

by humans and by robots, our approach differs along two dimensions. First, we perform

a manual match between occupations and robots according to their functional analogies,

that is on the basis of the overlap between workers’ activities and robots’ applications,

whereas he explores the database on US patents and the O*NET database via a language

algorithm focusing on jobs’ tasks. Second, Webb (2020) calculates an exposure score for

each occupation, thereby aggregating the scores from the individual tasks and averaging

out both frequent/important and rare/unimportant tasks; instead, we exploit the one-to-

one association between occupations and robot applications that descend from our focus
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on the three main activities characterising each job. Third, Webb (2020) investigates

the empirical relationship between the average local exposure score and the employment

dynamics within occupation-industry cells, while we study the relationship between the

employment dynamics of exposed workers and a measure of the local exposure to robot

adoption accounting for the actual evolution in the national stocks of robots.

A few caveats are in order. Our matching approach between occupations’ activities

and robot applications requires that each occupation is associated only with one appli-

cation, whereas the same type of robot can be associated with more occupations. As a

drawback, this leads to neglect all the minor activities that might be exposed to other

robot applications. The assumption underpinning this matching is that firms refrain from

purchasing robots for unimportant and infrequently repeated activities in a profession.

While this is a demanding assumption, it is worth recalling that, as explained above,

any occupational taxonomy and any occupation-robot matching procedure does involve

an implicit simplification. The second caveat to consider is that, notwithstanding the

wealth of information in the Inapp ICP Survey, a non-negligible dose of judgement is

used in matching occupations’ activities and robot applications. To the extent that pos-

sible errors are not systematic, this should not represent a problem in our estimations

that exploit cross-regional differences in the local exposure and in employment dynamics.

The adoption of an instrumental variable also contributes to limit the relevance of such

potential problem. Being this as it may, in Appendix C we provide some comforting

evidence showing that the occupations we identify as exposed to robots accord well with

those that Graetz and Michaels (2018) and Josten and Lordan (2019), and to a lower

extent also Frey and Osborne (2017), find as susceptible of automation.

Before closing this section, it is worth noticing that the novel elements of our measure

find an optimal application to the Italian case for two main reasons. The first one regards

the availability and quality of the data. The frequency and importance of the various

activities in each occupation are assessed on the basis of the Inapp ICP Survey that

accounts for the actual structure of the Italian labor markets, the adopted technology

and workers’ skills, thereby reducing any methodological concerns associated with the

use of crosswalk tables linking the classification of Italian occupations with that of US

occupations in O*NET. As in Italy there is the only European example of a Dictionary

of Occupations that is fully comparable to the US O*NET database at the five-digit

Isco08 level (more on this in Section 4), this represents an advantage stemming from

focusing on Italy.12 The second advantage of our dataset is that the description of the

occupations in the Inapp ICP survey is not influenced by the most recent developments in

12The German BIBB/IAB dataset also includes job-related information (e.g., job tasks, job skill re-
quirements) (see Spitz-Oener, 2006), but only the Inapp ICP survey can be considered equivalent to
O*NET.

11



the realm of robotics, being it developed at the beginning of the period of interest. Hence,

neither the recent changes in the activities associated with the occupations, nor the recent

modifications in the array of professions for which new vacancies are posted influence our

measure of exposure. Accordingly, as recommended by Graetz and Michaels (2018),

the adopted classification is not endogenous with respect to the social and technical

innovations introduced in the last decade or so.13

3 Empirical strategy

3.1 The model

In order to estimate the effects of the local exposure to robot adoption on the Italian local

employment dynamics, we estimate different variants of the following empirical model:

∆yi = β ∆RXi + x′
i,t0α+ z′i,t0δ + p′i,t0γ + r′mφ+ εi, (1)

where ∆yi = yi,t − yi,t0 denotes the change in the outcome variable y for local labor

market i between t0 and t (i.e., from 2011 to 2018), and ∆RXi indicates the measure

of the change in the local exposure to robots, which is based on our matching between

workers’ and robots’ activities, over the period of interest. Besides local employment and

unemployment rates, we study the dynamics of local employment dynamics (measured as

changes in the share of employment over the working-age population) in either the occu-

pations exposed to robot adoption (because characterised by specific activities that can

be performed by specific robot applications) or robot operator jobs. Given the relatively

long time span of the analysis, β should be interpreted as the long-term structural effect

of robot exposure on labor market outcome y, as in Acemoglu and Restrepo (2020).

Although the specification in first differences eliminates most of the effects associated

with the unobserved time-invariant heterogeneity across local labor markets, to control

for further possible confounding factors we include in the estimations a set of lagged

demographic controls (xi,t0), a set of lagged controls to capture industry-related factors

(zi,t0), a set of lagged profession-related controls (pi,t0), all calculated at the beginning

of the period (2011), and four macroarea (North West, North East, Center, South) fixed

effects (rm). The term εi indicates the idiosyncratic error term. All the model estimates

are weighted on the basis of local labor markets’ resident population at the beginning of

the period (2011). Weighted regressions are typically adopted in this literature to ensure

that sampling issues in small geographical areas do not drive the results. As LLMAs

13This is an important feature, as shown by Graetz and Michaels (2018) who use the old (year 2000)
Census occupational classifications with a view of avoiding matching occupation titles and robots’ ap-
plications on the basis of a contemporaneous classification of jobs.
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are unplanned domains in the design, we shall conduct some robustness checks to show

that the results are consistent across samples where very large and very small areas are

excluded. We will also show the results of unweighted regressions.

The choice of the economic indicators to include in the specification to deal with

possible confounding factors is informed by previous works in the literature. Among the

lagged demographic controls, we encompass the logarithm of the resident population, the

share of residents older than 65, the share of residents with a tertiary education, the share

of female residents and the share of foreign-born residents. Since the size and the age

structure of the population are likely to influence (along with other characteristics of the

local demography) both the labor market dynamics and the likelihood of robot adoption,

the inclusion of control variables of this kind is a common practice in the literature. The

lagged industry-related controls include the local exposure to trade competition from

China (measured as in Autor et al., 2013), the share of employees in the manufacturing

sectors, the share of employees in the transportation and logistics industry, and the

share of employees that use a personal computer (available only at the regional level).

The lagged profession-related controls include the local share of workers occupied as

craftsmen, plant operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08),

and the local diffusion of routine occupations calculated at the beginning of the period.14

We also conduct some balancing tests to see whether other regional economic indi-

cators are correlated with predicted robots exposure, as in this case they should also be

controlled for. We consider the local employment and unemployment rates, calculated at

the beginning of the period, as well as the local share of workers employed in the private

sector (to control for structural differences in the private and public sector during the

austerity period), and the share of local units in non-light manufacturing sectors with at

least 50 employees (since Acemoglu et al., 2020b, find that firms adopting robots tend to

be large). The results of the tests, available in Table 1, reveal that, conditional on the

included controls, the local employment and unemployment rates are not significantly

correlated with the predicted change in robots exposure, and need not to be included in

the model. On the contrary, the local share of workers employed in the private sector and

the share of local units in non-light manufacturing sectors with at least 50 employees are

significantly correlated with the adoption of robots. Accordingly, we add these variables

14Autor and Dorn (2013) and Autor et al. (2015) distinguish routine and non-routine occupations on
the basis of the presence of routine, manual and abstract tasks in each occupation in 1980, and classify
as routine occupations those in the top-third of the employment-weighted distribution of the routine-
task intensity. We follow this approach as well. Autor et al. (2015) further elaborate the Autor and
Dorn (2013)’s classification of occupations that appear as automatable due to the intensive execution of
routine and codifiable tasks. More recently, Josten and Lordan (2019) build on Autor and Dorn (2013)’s
classification of automatable works and, by drawing on patent data, identify additional jobs that could
be automatable in the next decade.
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among the controls in the main specification. Although studying the association of these

controls with local labor market outcomes may be of interest per se, these terms are

included exclusively to mitigate the risks of biased estimates, and therefore we shall not

discuss the estimated coefficients.

<< Table 1 here >>

The inclusion of the macroarea fixed effects allows us to control for the large-scale

labor market dynamics that characterize the Italian macro regions (i.e., North-West,

North-East, Centre, and South and Islands), because of long-lasting structural differences

within the country. It is worth noticing that the inclusion of macroarea fixed effects

is demanding, as the identification relies only on the variability within such relatively

homogeneous areas, but it is fairly common in the literature. Acemoglu and Restrepo

(2020) adopt State level fixed effects for the US and Dauth et al. (2017) include three

macro regions for Germany. In a robustness check we shall report also the results obtained

with regional (NUTS2) fixed effects.

As anticipated in Section 2, the new measure of the local exposure to robots is the

explanatory variable of interest in the empirical model 1 and it can be formally defined

as follows:

∆RXi =
∑
a

µa,i log

(
Ra,t

La

)
−
∑
a

µa,i log

(
Ra,t0

La

)
, (2)

where Ra,t and Ra,t0 indicate the national stock of industrial robots in application a

respectively at the end and at the beginning of the period, µa,i stands for the local share

of workers performing activities mapped to application a in LLMA i in 2011, and La

represents the total number of workers (at the national level) employed in occupations

mapped to robot application a in 2011. This activity-based measure combines the local

distribution of occupations and their prevalent activities with the variation in the national

stocks of robots performing the various applications.

Census data on the employment conditions of the residents, available for the years

2001 and 2011, do not contain information about their occupations but only about the

industry of employment. However, the data on the workforce structure can be retrieved

from the continuous labor force survey (Rilevazione Continua sulle Forze di Lavoro –

RCFL) that is carried out each quarter by the Italian National Institute of Statistics

(Istat) at a high level of disaggregation (four-digit level between 2004 and 2009, five-

digit level thereafter). Thus, we proceed in three steps. First, from the 2011 Census

data we obtain information about the size of the local population aged between 15 and

74, and the number of workers employed in each industry at three digit level. Second,
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using the national data from the RFCL we calculate the occupational structure of each

industry in terms of the various occupations. Third, we calculate the share of workers

employed in each industry in those occupations that we match with the different robot

applications. Accordingly, the parameter µa,i is the local share of workers employed in

all the occupations that are matched with robot application a. It is calculated as:

µa,i =
∑
s

∑
o

Ioaθosµs,i, (3)

where Ioa is an indicator function taking value 1 if occupation o is exposed to robot

application a (and zero otherwise), θos is the share of workers employed in occupation o

in the industry s (calculated at the national level based on RFCL data), and µs,i is the

ratio of workers employed in industry s over the residents (aged between 15 and 74) in

local labour market area i (calculated based on 2011 Census data).15

3.2 Addressing endogeneity concerns

In the presence of unobservable and unevenly distributed shocks that simultaneously

influence local labor market dynamics and the local exposure to robots, OLS estimates

of the coefficient β would be biased and inconsistent, as they would not identify the

component of robot exposure driven by changes in technology. For example, firms may

adopt robots in response to changes in labor demand at the LLMA level, such as a

recession in an area with a large exposure to robots, or in response to other changes that

also impact on labor demand, such as an increase in workers’ bargaining power (Acemoglu

and Restrepo, 2020).

Accordingly, to capture the impact of the exogenous component of robot adoption

on local employment dynamics we resort to an instrumental variable (IV) approach.

More precisely, we build a shift-share IV à la Bartik that combines historical (i.e., pre-

determined) local employment shares and the evolution of robot adoption abroad to

proxy for the increase of robots in Italy. This strategy, which has become standard in

the literature (e.g., Dauth et al., 2017; Caselli et al., 2020a; Acemoglu and Restrepo,

2020), is an effective way to capture only the part of robots exposure that is exogenously

determined by advancements in robot technology. As the evolution of the stocks of robots

in the European countries may be determined by common demand factors and by regional

value chains in the manufacturing sectors, we consider the process of robot adoption in

Japan, South Korea and the United States (JPKRUS, hereafter). These are all developed

15If Census data had contained information on the local occupational structure, the parameter µa,i

could have been calculated directly from the micro-level data. As this is not possible, we combined the
Census data on the sectoral structure of local employment with the occupational composition of the
industries that the RFCL survey allows us to derive.
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economies whose GDP is only partially correlated with the Italian one and that started

adopting robots much earlier than 2011, and are not involved into a rapid catching-up

process as the one observed in China. We consider all extra-European countries in a

robustness check.

In building this instrument, we allocate the changes in the foreign stocks of robots by

application on the basis of the local employment shares in occupations exposed to such

applications. We mimic the methodology adopted to construct the explanatory variable

∆RXi, thus our IV reads as follows:

∆R̃X i =
∑
a

µ̃a,i log

(
R̃JPKRUS

a,t

L2001
a

)
−
∑
a

µ̃a,i log

(
R̃JPKRUS

a,t0

L2001
a

)
, (4)

where L2001
a denotes the aggregate number of workers performing activities matched to

robot application a in 2001, µ̃a,i is the share of workers in occupations matched to robot

application a in local labor market i in 2001, and R̃JPKRUS
a,t and R̃JPKRUS

a,t0 are the stocks

of industrial robots performing application a in JPKRUS, respectively at time t (2018)

and t0 (2011). To prevent endogeneity problems, the employment shares are lagged ten

years prior to the beginning of the period of interest, and the data from the 2001 Census

are used to derive the sectoral structure of employment at the local level.16

This shift-share IV has never been adopted in previous works because it is based on

our new approach to perform a match between occupations and robots on the basis of

the functional overlap between workers’ activities and robots’ applications. Conversely,

previous studies resorted to shift-share industry-based IV exploiting changes in the foreign

stocks of robots by industry, together with the local shares of workers employed in every

industry. We believe that our set up is preferable as it offers internal consistency: we aim

to explain the employment dynamics in the professions exposed to robot applications by

exploiting the cross-regional variation in the local exposure to robots, which is calculated

on the basis of a match between occupations and robots based on their activities, and by

instrumenting such variable with a shift-share IV using lagged shares of occupations and

the foreign stocks of robots by application.

16To convert these values into local shares of occupations, information on the occupational structure
of the different industries is necessary. As representative data about occupations at the four-digit level
of aggregation became available only in 2004, we combine the 2001 Census data on sectoral employment
shares with the 2004 data on the occupational structure of the industries from the RCFL, using the same
methodology employed for equation (3).
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4 Data

Our study is based on a panel that, for the years 2011 and 2018, integrates detailed

information on the workforce occupational structure and on the demographic composition

of 377 Italian local labor markets17, whose boundaries where identified by the Italian

National Institute of Statistics in 2011 on the basis of workers’ commuting patterns.18

As anticipated, local exposure to robot adoption is calculated by combining information

about labour markets together with data on shipments and operational stocks of industrial

robots provided by the IFR. In particular, our measure of local exposure to robot, ∆RXi,

as well as all the variables capturing the evolution of employment at the LLMA level,

are constructed by using data on the workforce structure retrieved from the Census of

Population and the Census of Industry and Services, organized every ten years by Istat,

and from the continuous labor force survey, RCFL, carried out each quarter by Istat.

Other demographic and industry-related variables included as controls in our empirical

specifications are retrieved from the above-mentioned censuses by Istat. A more detailed

description of these data and of the mapping between occupations’ activities and robot

applications is provided in what follows.

The data on industrial robots, defined by the International Organization for Stan-

dardization as “automatically controlled, reprogrammable, multipurpose manipulator[s]

programmable in three or more axes, which can be either fixed in place or mobile for

use in industrial automation applications”, are derived from the IFR database, which

contains the annual shipments and stocks of industrial robots for more than 50 countries.

Robots are classified according to either their application at the three digit level (e.g.,

welding, painting, pallettizing) or the economic activity of the purchasing companies at

the two-digit level (based on ISIC rev. 4).

Statistics on the LLMA occupational structure have been computed on the basis of the

data retrieved from the Census of Population and the Census of Industry and Services and

from the Istat’s RCFL, a quarterly survey which represents the most important source

of official information on Italian labor markets. Covering about 1,250 Italian municipal-

ities, the survey involves approximately 77,000 households and 185,000 individuals each

quarter.19 The survey gathers information on the employment status of the respondents,

17Local labor markets represent functional geographic areas that go beyond administrative bound-
aries and correspond to economically integrated spatial units, suitable to investigate various aspects of
geographical heterogeneity (see, for instance, de Blasio and Poy, 2017).

18The sample of LLMAs covered by the RFCL survey, which we use to derive the local shares of robot
operators and workers exposed to robots, counts 412 areas, but we trim the sample so as to remove the
outliers (top and bottom one percent of the distribution) in each one of the dependent and independent
variables. Since the sample is correctly stratified, the absence of some LLMAs does not cause problems
in terms of its representativeness, although some minor LLMAs are disregarded.

19As the RCFL is run on a quarterly basis, we have computed annual data by merging the quarters.
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as well as on other socio-demographic traits, such as age, gender, nationality, and munic-

ipality of residence. For the respondents who are employed, the survey records extremely

detailed information on their occupation, sector of employment, type and duration of the

contract, number of hours worked and salary.

Occupations in RFCL and in this work are codified according to the 2011 Inapp-

Istat Classification of Occupations (Classificazione delle Professioni – CP2011 hereafter),

which is the Italian version of the current ILO International Standard Classification of

Occupations (Isco08). At its finest level of aggregation (i.e., five digit level), the CP2011

classification contemplates about 800 occupational units (OU, hereafter) – referred to as

“unità professionali” –, that account for as many as 6000 job titles.20

The advantage of resorting to the RCFL survey is twofold. First, it allows to match

individual workers’ occupations with detailed information on occupations’ characteristics,

as provided by the 2013 Inapp Survey on Workers and Occupations (Indagine Campi-

onaria sulle Professioni, Inapp ICP hereafter). In both surveys, the occupations are codi-

fied according to the highly disaggregated five-digit level based on the CP2011 database.

The second advantage is that the RCFL provides sample weights, which we use to extend

the results of the analysis to the overall population, as done in the literature.

As discussed in Section 2, our new measure of local exposure to robot adoption is

based on a match between robots’ applications and occupations’ specific activities per-

formed by using the information contained in the Inapp ICP survey. By following the

design of the American O*NET, but tailoring it to the Italian context, the survey docu-

ments the generalized tasks and the specific activities and duties of the workers belonging

to each different OU. In particular, it reports quantitative measures (varying on a scale

from 1 to 5) of the frequency and the importance of various specific activities associated

with each OU at five-digit level of the taxonomy.21 Thanks to all this information, we

manually match each IFR robot application with one or more occupations on the basis

of the occupation description, its three primary occupation-specific activities according

For the year 2018, however, we had to combine the last two quarters of that year with the first two of
the following year. This is because the data relative to the first and second quarters of 2018 only provide
information on occupations at a four-digit level and not at the five-digit level as found in the subsequent
waves.

20The CP2011 OUs include for instance “Welders and flame cutters” (code 6.2.1.2.0), and this group
contains several job titles (namely, Lead Welder; Oxyacetylene Welder; Plumber Welder; Autogenous
Cutter; Oxyacetylene Cutter; Flame Fret-Sawing Worker; Fusion Welder; Water Gas Welder; Braze Weld-
ing Welder; Tin Welder; Atomic Hydrogen Welder; Aluminium-Thermal Welder; Autogenous Welder;
Special Metal and Metal Alloy Welder).

21For example, consider the OU “Shoe manufacturers” (code 6.5.4.2.3). According to the frequency
and importance indices, it includes both rare and unimportant specific activities (such as performing
springing of the uppers, with a value of 1.2 for importance and 0 for frequency) and specific activities
that are frequent and important (such as packaging or wrapping finished products, with a value of 3.4
for importance and 2.9 for frequency).
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to the Inapp ICP scores and, where necessary, additional information provided in the

survey. By relating robots and occupations on the basis of functional analogies and com-

plementarities, we determine whether an occupation is “exposed to a robot application”,

that is if its main tasks and activities can be associated with a specific industrial robot

application, or not. In Table B1 in Appendix B we report detailed examples of matches,

if any, between occupations and robot applications.

Using information about occupations’ description and specific activities, we also iden-

tify those jobs where the workers can be considered as “robot operators” because they

are involved in the design, installation, maintenance and operation of forms of automa-

tion related to robotization. None of such activities can be carried out by a robot, and

thus it is not possible to associate occupations and robot applications on the basis of the

activities performed by robots and workers. These occupations deserve to be singled out

as they are expected to grow unequivocally with the increase in robot adoption.

Overall, we identify 123 OUs that we categorize as exposed to different robot appli-

cations, 8 as robot operators, and 669 OUs neither exposed to robot applications nor

operating on robots.

Table 2 shows some further summary statistics for these variables along with the

unemployment rate and robots exposure for the set of LLMAs in our sample. These

descriptive statistics reveal a great deal of heterogeneity in the evolution of local employ-

ment across LLMAs, as anticipated in the Introduction. We point out that, on average,

the share of robot operators over the working-age population grows relative more than

the share of exposed workers, but both are positive. While these rates of change may

appear as small, it is worth noticing that the local relative weight of robot operators in

the working-age population increases on average by 50% in only 7 years.

<< Table 2 here >>

Figure 1 shows a map of Italian LLMAs and changes in robots exposure across them.

Figure 2 show that there seems to be a positive relation between changes in robot adoption

by application and changes in employment in jobs exposed to robotization. This seems to

suggest that indeed we should be careful in interpreting robot adoption as job displacing,

even for those jobs that include activities that in principle could be fully replaced by

robot applications, and that its effects may be highly differentiated across occupations

and workers. Finally, Figure 3 shows that our IV based on robot adoption in Japan,

South Korea and the US seems to be informative for the part related to the change in

the stocks of robots in Italy.

<< Figure 1 here >>
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<< Figure 2 here >>

<< Figure 3 here >>

Furthermore, thanks to the detailed information provided in the Inapp ICP Survey,

we can identify other groups of occupations in terms of their characteristics, rather than

using our manual categorization into robot operators, exposed occupations, and non-

exposed jobs. For instance, following the literature, we can study whether the change

in local exposure to robot adoption is associated with a change in the share of routine

intensive occupations. Differently from other works, we test for, rather than assume,

a positive relationship between higher levels of routinization at work and exposure to

robotization. Accordingly, we empirically assess whether changes in the local shares of

routine-intensive occupations are associated or not with the evolution of local robots ex-

posure calculated using our manual match between robots’ applications and occupations’

activities. Notably, we do not contend that a number of routine jobs can be exposed to

robots and, as discussed at length in Section 6, our taxonomy of exposed occupations

sensibly correlates with that based on routine-task intensity. However, as explained by

Autor et al. (2015), routine-task intensity has a dual source in blue-collar production

occupations and in white-collar office and clerical activities: while both are exposed to

automation, only the former are potentially exposed to robots.22

In addition to testing groupings of occupations based on the intensity of routine tasks,

we also explore the questions in the Inapp ICP survey to study further occupational

features and build alternative groups of occupations. This will be discussed in Section 6.

5 Main results

To assess the relationship between the change in local exposure to robot adoption, cal-

culated on the basis of our novel approach, and local employment dynamics, we estimate

equation 1 by focusing on the evolution of the local employment rate, the local unemploy-

ment rate, the local share of robot operators over the working-age population, and the

local share of workers employed in exposed occupations over the working-age population.

As can be seen in Table 3, all the OLS estimates for the variable of interest (∆ RXi,t)

are not statistically different from zero. As discussed, a number of possible endogeneity

problems plagues the OLS estimation. To address them, we follow the literature and

22In all estimations we control for the initial local shares of routine occupations. Together with the
other aspects of our empirical strategy, this control variable strengthens the identification as it reduces the
chances of picking up unobserved occupation-specific factors associated with the local average diffusion
of routine-intensive occupations, rather than robot adoption. Notably, the intensity of routine tasks is
assessed at the beginning of our time period, being the rank of tasks stable in the short time (Akcomak
et al., 2016).
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instrument the explanatory variable with a relevant and valid instrument with a view to

exploiting only the exogenous component of the growth in adopted robots in Italy, driven

by technological advances common to all countries, and not by local demand factors.

In this way, we reduce the likelihood that demand shocks and other idiosyncratic (area-

specific) factors may bias the estimates. For internal consistency, as explained in Section

3.2, we resort to the shift-share IV ∆R̃X that combines the variation in the stocks of

robots in Japan, South Korea and the US, application-by-application, between 2011 and

2018, and the 2001 occupational shares of workers exposed to robots in each LLMA.

<< Table 3 here >>

The results of our IV estimates are reported in Table 4 and Table 5. Columns (1)-(4)

in Table 4 report the estimates for the variation in the local employment and unem-

ployment rates, while columns (1)-(4) in Table 5 reproduce the estimated coefficients of

∆ RXi,t for the shares of local employment over working-age population for robot op-

erators and exposed workers. For each dependent variable of interest, we show both a

minimal specification (i.e., we only include among the controls the explanatory variable

of interest, ∆ RXi,t, and the macro-area dummy variables) and the specification with all

the controls described in section 3.1. Independently from the specification, the results

from the first-stage estimations (see column (1) of Table A1 in Appendix A for the spec-

ification with the full set of controls) are satisfactory: the Kleibergen-Paap F statistics

are larger than the critical values.

<< Table 4 here >>

As in other studies, the estimated parameters for the aggregate employment conditions

are not significant: this implies that the local exposure to robot adoption is not correlated

with variations in the local employment and unemployment rates. This result is in line

with the consensus view that, in most countries, robot adoption has so far not been

associated with important net effects at the aggregate level.23

<< Table 5 here >>

Regardless of whether the controls are included in the regressions or not, the esti-

mated coefficient of ∆ RXi,t is positive and significant for what concerns the change in

robot operators. This finding is in line with expectations, and it is a new result in this

strand of the literature. Previous studies have shown a positive effect of robot adoption

23Fernandez-Macias et al. (2021) argue that robots in Europe are too concentrated and perform only
marginal tasks in production to have large employment effects.
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on skilled workers employed in jobs intensive in cognitive tasks (which can be indirectly

associated with automation and computerization), yet our categorization is different. We

specifically focus on those jobs that are explicitly associated with activities complemen-

tary to robot installation, maintenance and use. Hence, this represents novel empirical

evidence in favour of the reinstatement effect discussed by Acemoglu and Restrepo (2019).

According to the estimates, an increase by 1% in robot adoption leads to an increase by

0.27 percentage points in the local share of robot operators. Thus, the overall increase in

robot operators in Italy between 2011 and 2018 can be entirely explained by the increase

in robot adoption that occurred during the same period.

No statistically significant effect of robots exposure on the share of workers employed

in exposed occupations is found (columns (3) and (4) in Table 5). This result can be

explained in various ways. The first reason is that the displacement effect of robots on

workers has been very limited in Italy during this period, as also suggested by Dottori

(2021) based on an earlier period and an industry-based specification of robots exposure.

An alternative explanation refers to the fact that each occupation consists of very many

activities and only few of them can be performed by robots: if a robot application can

substitute a worker only in a limited range of his/her activities, then that worker is not

displaced, but simply forced to redirect his/her efforts on the remaining activities. A

third reason why the estimated parameters may be insignificant is that they reflect the

fact that contrasting effects across occupations may average out. Besides robots displac-

ing workers, there might be occupations that benefit from the introduction of robots

as these professions are and remain relatively intensive in activities where humans have

a comparative advantage (Acemoglu and Restrepo, 2019; Caselli and Manning, 2019).

Clearly, it is also possible that our taxonomy of exposed occupations is imperfect, and

the estimates suffer from the inclusion and exclusion of certain jobs; while possible, we

show in the Appendix that our taxonomy accords well with other classifications of pro-

fessions exposed to computerization, automation and robotization. Finally, it is possible

that the displacement effect is counteracted by an increase in the scale of production

of firms adopting robots. This would be in line with previous studies on the firm-level

determinants of robot adoption, as they concur in discarding labor cost-saving objectives

and in emphasizing firms’ attempts at standardizing quality, increasing control over the

production process, introducing new sophisticated products and reach new destination

markets (Aghion et al., 2020; Backer et al., 2018). This is likely to be true in Italy,

where firms cannot undertake collective dismissals to save labor unless they face financial

difficulties, a condition that is at odds with large investments in robots. However, our IV

strategy is aimed at minimizing this last possibility.

As anticipated in the Introduction, thus, our findings help to interpret the inconsistent
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results reached by the studies conducted with industrial/regional data and the analyses

using firm-level data: the former find either negative or nil effects of robots exposure

on local employment dynamics, whereas the latter suggest that firms investing in robots

also expand the number of employees. All in all, opposite effects may indeed coexist,

and their net effect may be limited. The taxonomy of occupations that one adopts

to estimate the impact of robots exposure on employment influences the results, as it

represent a net average effect of a highly differentiated impact. In turn, this suggests to

explore alternative occupational categories in the attempt at uncovering the underlying

mechanisms associating robots exposure with labour market dynamics, as done in Section

6.

5.1 Robustness checks

In this section we carry out a battery of auxiliary regressions to show that our results are

robust across specifications and sample compositions.

The first set of robustness checks concern the sample composition. To show that the

results are driven neither by the few very large LLMAs, nor by the multitude of small

ones, we build two sub-samples: the first one excludes the four cities with more than 1

million residents (i.e., Milan, Rome, Naples and Turin), whereas the second drops the

LLMA in the bottom 20% of the distribution in terms of population (namely, those with

less than 33363 residents). As can be seen in Table 6, the main results remain valid with

these sub-samples, and the first stage of the 2SLS estimation is not affected negatively.

<< Table 6 here >>

As a second robustness check, we show the results obtained by running unweighted

regressions. The estimates in Table 7 reveal that our main results are confirmed, and

thus are not driven by the largest LLMAs. In fact, these unweighted estimations would

even suggest a positive and significant impact of robots exposure on exposed professions

as well. Although stimulating, we do not dwell much on these findings as unweighted

regressions are not warranted given our use of data obtained from a representative survey.

<< Table 7 here >>

The third set of robustness checks is concerned with our assumption about the error

term. In the first check, we assume that the error term is correlated across observations

within provinces and, thus, we cluster standard errors at the (NUTS3) provincial level.

Second, we substitute macroarea fixed effects with (NUTS2) regional fixed effects. This

specification is particularly demanding as the identification of the parameter of interest
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hinges on the variation in labour dynamics and robots exposure across few LLMAs within

the same region. Table 8 shows that the results remain qualitative and quantitatively

similar to the main results. The first-stage regressions of the 2SLS approach show that

the IV remains informative.

<< Table 8 here >>

The fourth robustness check concerns the IV variable. So far, we have focused on robot

developments in Japan, South Korea and the United States to construct our informative

and valid IV. This group of countries should in principle minimize the risk of using an

invalid IV that co-varies with fluctuations in aggregate demand in Italy. It is worth

noticing that, differently from those studies using industry-based shift-share measures of

robots exposure, our measure is based on the change in the stocks of robot applications:

this reduces even further the possibility of inadvertently picking-up simultaneous trends in

employment and robot adoption across industries. Yet, as a robustness check, we repeat

the main estimations with an alternative IV that considers the variation in the stocks

of robot applications in all extra-European countries. The results, reported in Table

9, confirm qualitatively our main findings. In this case, however, also the estimated

parameter for exposed workers appears positive and significantly different from zero. It

should be noted, however, that the Kleibergen-Paap F statistic has a much lower value,

close to the Stock-Yogo critical values, and this suggests to take the results based on this

alternative IV with caution.

<< Table 9 here >>

The IFR accounting methodology to calculate the stock of robots assumes a full ac-

tive service life of 12 years for each robot and its immediate withdrawal from service

afterwards. In previous studies, some scholars (see, among others, Graetz and Michaels,

2018) recalculated the evolution of the stocks of robots by means of a perpetual inven-

tory method. This approach avoids large discontinuities in the robot stock series and

is compatible with a smoother usage of robots over the large business cycle fluctuations

observed in Italy in the period of interest. Hence, we reconstruct the national stocks

of robots for Italy, Japan, South Korea and the US by using the perpetual inventory

method with an annual depreciation rate of 10%, annual investment in robots reported

by IFR, and the initial value of the stock based on 2006.24 Hence, our fifth robustness

24We choose 2006 for the initial value for two reasons. First, before this year, a substantial portion
of robots were assigned by IFR as “unspecified” applications or sectors. Second, in an effort to improve
the harmonization of cross-national data, between 2004-2005 the IFR reviewed considerably the way in
which information was collected.
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check uses this alternative method for calculating the stocks of robots, in terms of robots

applications, both for the measure of local exposure and the IV. Table 10 reports the es-

timates obtained using these alternative measures of robot stocks. The results are, once

again, qualitatively and quantitatively similar to those obtained in our main specification.

Notably, the first stage appears to be very robust, with the Kleibergen-Paap F statistic

approximately equal to 300.

<< Table 10 here >>

The next robustness check concerns the existence of pre-trends that could affect the

results and their interpretation. If the adoption of robots in the period of interest (2011-

2018) is statistically correlated, conditional on the controls variables used in the specifica-

tion, with the employment dynamics in the previous period, one cannot exclude that our

main regressions pick up pre-existing local trends rather than contemporaneous effects.

As can be shown in Table 11, this is not the case. Conditional on the control variables

included in our specification, future robots exposure does not seem to be correlated with

past growth in the employment shares of the occupation categories of interest.

<< Table 11 here >>

Our shift-share IV can be seen as the inner product of the (initial) local shares of

workers in occupations matched to a given robot application (e.g, µ̃a,i for application

a) and the exogenous shocks due to changes in the stocks of each robot application in

Japan, South Korea and the US (e.g, ga = ∆ln R̃JPKRUS
a,t ). This IV is consistent with

a research design based on pooling the differentiated local exposure to the exogenous

shocks across the thirteen robot applications. As shown by Goldsmith-Pinkham et al.

(2020), our two-stage least squares estimation is equivalent to a generalized method of

moments estimator using the local shares of workers exposed to robot applications as

instruments, and a specific weight matrix constructed using the robot application shocks.

A shift-share IV estimator can then be seen as a weighted combination of just-identified

estimations, each using the local shares of workers exposed to a given robot application

as a separate instrument. Goldsmith-Pinkham et al. (2020) also show that the shift-share

IV estimator can be decomposed so as to derive the underlying Rotemberg weights, which

can be interpreted as the sensitivity-to-misspecification elasticities associated with each

instrument. All this implies that a sufficient condition for the validity of the shift-share IV

estimator is the validity of the local shares µ̃ as instruments, conditional on the controls

in the specification, in particular the shares associated to those applications with the

largest Rotemberg weights.25.

25As we have a large sample of locations and a fixed number of robot applications, the consistency
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Using this framework developed by Goldsmith-Pinkham et al. (2020), we can identify

which robot applications have the largest weights (α̂a) in the Rotemberg decomposition.

As reported in Panel C of Table 12, the largest-weight robot application (0.85) is “Han-

dling for machine tending” (Application 115), which includes, for instance, the robots

developed for handling operations in glass, ceramics or food production. One would ex-

pect these kinds of robots to accompany the workers, who remain engaged in various

complementary activities. Accordingly, to be in line with the theoretical mechanism in-

spiring the analysis, one would expect the estimated coefficient for the largest-weight

robot application in the regression for robot operators to be positive and similar to the

average effect reported in Table 5. This is indeed the case, as the estimated coefficient

( ˆβa=115) is equal to 0.275, which is close to the value in the main regression. Among the

other results from the decomposition, we would like to mention the small share accruing

to negative weights (Panel A). The validity of our identification strategy is also supported

by the large correlations (Panel B) between the local shares of workers exposed to a given

robot application (αa), on the one hand, and the aggregate shocks ga, the F-statistic (Fa)

from the first stage of the just-identified estimations using the local share of workers

associated to robot application a as an instrument, and the dispersion of these shares

across locations (Var µa), on the other.

<< Table 12 here >>

Finally, we also check the effect of robotization on two new sets of related dependent

variables, i.e., the change in the share of weekly hours worked by robot operators and

workers exposed to robots over the total number of weekly hours worked, and the growth

rate in the hourly pay for all workers, robot operators and workers exposed to robots.

All variables are measured over the same period, 2011-2018. The results in Table A2

and Table A3 in Appendix A show that an increase in exposure to robots leads to an

increase in the number of hours worked by robot operators relative to other workers,

which implies that our main result is not driven by an increase in part-time workers and

a corresponding substitution of hours per worker, but rather by an actual increase in

full-time equivalent employees. On the other hand, we find no effect on hourly pay for

any category of workers, despite the increase in demand for at least one category of these

workers, i.e., robot operators. In part, this could be related to the generally weak labour

market in Italy over this time period.

of our shift-share IV estimator requires the exogeneity of the shares as the number of locations goes to
infinity
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5.2 Industry-based measure of local exposure to robots

Next, we compare the results obtained using our new method to calculate local robots

exposure and those using the traditional industry-based shift-share approach without the

match between occupations and robot applications. As done in the literature, we calculate

for the latter approach the variable ∆RX industry
i and the corresponding industry-based

shift-share IV, ∆R̃X
industry

i . Following the notation above, we have:

∆RX industry
i =

∑
s

µs,i log

(
Rs,t

Ls

)
−
∑
s

µs,i log

(
Rs,t0

Ls

)
, (5)

where Ls denotes the aggregate number of workers in sector s in year 2011, µs,i = Ls,i/Li

is the 2011 share of workers in sector s in local labor market i, and Rs,t and Rs,t0 are the

Italian stocks of industrial robots in sector s at time t (2018) and t0 (2011). Similarly,

the shift-share industry-based instrumental variable ∆R̃X
industry

i can be defined as:

∆R̃X
industry

i =
∑
s

µ̃s,i log

(
R̃JPKRUS

s,t

L2001
s

)
−
∑
s

µ̃s,i log

(
R̃JPKRUS

s,t0

L2001
s

)
, (6)

where L2001
s denotes the aggregate number of workers in sector s in year 2001, µ̃s,i =

L2001
s,i /L2001

i is the 2001 share of workers in sector s in local labor market i, and R̃JPKRUS
s,t

and R̃JPKRUS
s,t0 are the stocks of industrial robots in Japan, South Korea and the US in

sector s at time t (2018) and t0 (2011).

The results of this alternative empirical strategy are shown in Table 13. The results are

qualitatively similar, but quantitatively different. The estimated impacts are smaller and

less significant, in line with an attenuation bias caused by the approximation related to the

treatment of all workers in an industry as equally exposed to robotization. Indeed, the IV

barely passes the tests for the validity of the instrument: the Kleibergen-Paap F statistic

for ∆RX industry
i is approximately equal to 23, while the Stock-Yogo critical value at the

10% significance level is equal to 16.4.26 While obtaining qualitatively similar results is

to a certain extent reassuring, it is important to keep in mind that the identification of

robot operators and exposed robots (i.e., the dependent variables) still requires our novel

procedure to match occupations and robot applications. Hence, internal consistency calls

for building a measure of local robots exposure that incorporates the observation that

not all occupations within an industry are equally exposed to the robots installed in that

industry (as the industry-based approach implicitly entails).

<< Table 13 here >>

26The first stage is reported in Column 2 of Table A1 in Appendix A.
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Ideally, had we access to census data with detailed information on the sector and

on the occupation of each worker, as well as information on both the sector and the

application of each robot, we could build different and more sophisticated measures of

local exposure to robots. In this work, due to the limited information on IFR data and

the desire to exploit 2001 census data, we have adjusted the sectoral composition of the

local workforce by the occupational structure of each industry.

6 Employment dynamics across alternative occupational cate-

gories

As discussed in Section 5, it is worth investigating the impact of local robots exposure on

the employment dynamics of alternative (narrower) occupational categories. This exercise

might contribute to improve our understanding of the underlying mechanisms at work,

and provide some novel evidence on the relationship between (our new measure of) local

robots exposure and other meaningful groups of occupations that share specific features

(such as routine intensity, exposure to automation, and the like). It is worth stressing

that this analysis does not aim at covering every possible decomposition of the labor

force, but it explores those occupation-specific features that may contribute to determine

the sign and size of the impact of robot adoption on employment.

It is worth noticing that our measure of local robots exposure does not change and it is

still based on the identification of professions exposed to different robot applications, on

the basis of which the shift-share variable is built. In practice, thus, we exploit our novel

activity-based matching procedure of occupations and robot applications to investigate

the employment dynamics for categories of workers whose identification does not depend

on our activity-based taxonomy.

The first analysis we conduct investigates whether the RBTC hypothesis finds sup-

portive evidence in our setting or not. The RBTC literature maintains that intensively

codifiable activities are well suited to computerization and, accordingly, exposed to au-

tomation and digitalization. As illustrated in the Introduction, Autor and Dorn (2013)

and Autor et al. (2015) distinguish routine and non-routine occupations on the basis of

the relative importance of routine, manual and abstract tasks. For instance, they classify

as routine occupations those that are in the top-third of the distribution of the routine-

task intensity.27 It is plausible to think that also robots (as well as computers and other

forms of automation) can affect workers in relation to the manual and routine contents

of the tasks characterising every profession. Webb (2020), for instance, shows that robot

27See Fernandez-Macias and Hurley (2016) for a discussion of the alternative operationalizations of
the concept of routine in the RBTC literature.
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patents refer significantly more often to manual than routine tasks. Accordingly, rather

than grouping workers in terms of the activities characterising the professions, as done so

far in our main analysis, we study the local employment dynamics of groups of workers

that perform activities that are similar in terms of the routine-task intensity.

To conduct these estimations, we first identify the occupations that are traditionally

more routine intensive than others in Italy. We adopt the operationalization proposed by

Autor et al. (2003), and implemented by Esposito and Scicchitano (2020) and Cassandro

et al. (2020) on Italian data, using the Inapp ICP Survey. We also exploit the richness

of the Inapp ICP Survey, which contains information on different types of generalized

tasks, activities, risks, competences and skills associated to occupations at the five-digit

level, mimicking what was done by Autor et al. (2003) with the information contained in

O*NET. Following Autor et al. (2003) and considering occupations as routinary if they are

in the top third of the distribution of the Routine Task Index, we distinguish the following

groups: routine intensive occupations (RTI); routine cognitive (RC); routine manual

(RM); non-routine cognitive: analytical (NRCA); non-routine cognitive: interpersonal

(NRCI); non-routine manual (NRM); non-routine manual: interpersonal adaptability

(NRMIA).

As can be seen in the Table 14, the estimates suggest that there are no statistically

significant effects on local employment dynamics on the basis of occupations’ routine in-

tensity. However, our findings suggest that those who are employed in occupations that

are intensive in routine cognitive tasks or non-routine tasks associated with interpersonal

relations increase their relative shares. These findings seem to confirm that the relation-

ship between the change in the local exposure to robots and in the local employment

conditions is not characterized by a net substitution of workers in routine manual jobs.

As our results for the category of robot operators reveal, workers capable of developing,

supervising, maintaining, fixing and operating robots do seem to increase in absolute and

relative size. As Pfeiffer (2016) explains, “what workers [interacting with robots] need to

do is anything but mere routine work”. This result is in line with recent studies assess-

ing the relevance of the RBTC hypothesis in Italy, as they find that the phenomenon is

much less significant than in other developed economies (Basso, 2020; Cassandro et al.,

2020; Marcolin et al., 2018), also because of the country’s specialization in low-tech and

low-skill intensive sectors.

<< Table 14 here >>

If the intensity of routine tasks does not seem to determine jobs’ susceptibility to

robotization, other characteristics of occupations may determine the nature of the inter-

action between workers and robots. To this end, we explore the questions in the Inapp
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ICP Survey, so as to draw information on a number of features characterizing each oc-

cupation at the five-digit level. We consider, in particular, the answers given to the

following six questions: 1) “To what level is it necessary in your profession to be able to

use the abdominal and lumbar muscles to support the body in a continuous and repeated

manner over time without fatigue or giving in to the effort?” (Torso strength, question

D35); 2) “To what level is it necessary in your profession to perform physical activi-

ties that require moving the entire body or a substantial use of the arms and legs, such

as climbing, climbing stairs, balancing, walking, bending, and manipulating materials?”

(Performing general physical activities, question G16); 3) “To what level is it necessary

in your profession to use hands and arms to handle, install, position, and move materials

or to manipulate objects?” (Handle and move objects, question G17); 4) “How much of

your time do you use your hands to manipulate, check, or feel objects, tools, or control

systems?” (question H40); 5) “How automated is your work?” (question H49); 6) “How

important is it to keep track of sequences of machinery and equipment in your work?”

(question H55). Respondents can answer using a scale from 1 to 7 for the first three

questions and a scale from 1 to 5 for the last three questions.

Similarly to the RTI, each of these questions can be used to create an index varying

over the interval 0-100. For each of these questions, we identify those (five-digit level)

occupations that are in the top third of the distribution, and we calculate the changes

in the share of employment over the working-age population at the LLMA level for

each one of them. Accordingly, we obtain six groups: torso-intensive occupations (ToI);

physical movement-intensive occupations (PmI); manual-intensive occupations (ManI);

object-intensive occupations (ObI); automation-intensive occupations (AuI); machinery-

intensive occupations (MacI).

<< Table 15 here >>

Table 15 reports the estimates for the employment dynamics of the above-mentioned

groups of occupations. This analysis reveals contrasting, but not contradictory, results

and it confirms both the heterogeneous impact of robot adoption on workers and the

implications of using certain grouping of occupations instead of others. In particular,

the estimates reveal a negative effect of changes in the local exposure to robots on the

dynamics of the employment share of occupations characterized by activities and tasks

requiring continuous and repeated movements of the body: this is in accordance with a

substitution of workers in those activities that can be best performed by robots’ arms.

This result is an example of a displacement effect that can be detected only by performing

an analysis of employment dynamics at a high level of occupational disaggregation, as

done in this paper. Conversely, the results confirm a positive and (mildly) significant
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effect of exposure to robots on occupations characterized by a high level of automation

and intensive in machinery. These findings corroborate our conclusions on the impact on

robot operators: the integration of robots in firms is accompanied by the expansion of

occupations connected with them. It should not be surprising, thus, that the local share

of workers who answer that their job is highly automated grows more in those areas where

robots exposure expands.

7 Closing remarks

In this work we empirically investigate the effects that the change in local exposure to

robots had on the Italian local employment dynamics over the period 2011-2018. Our

empirical strategy extends previous research in this field as it focuses on occupations’

activities and robots’ applications, rather than on the industries in which robots and

workers are employed. Moreover, the analysis focuses on novel groups of occupations

identified on the basis of a manual match between occupations’ activities and robots’

applications that we conduct at a high level of disaggregation (five-digit level) for the

occupations.

This approach makes it possible to identify robot operators, that is workers employed

in occupations clearly associated with robot installation, maintenance and use. Economic

theory predicts that these jobs tend to grow together with the volume of adopted robots,

as their activities are complementary to those carried out by specific robot applications.

With the same method, we also single out those professions that, because of the main

activities they consist of, are most exposed to the robot applications available in the

market. Workers employed in these occupations are considered as exposed to robots and,

according to economic theory, their number may either grow or fall according to the net

impacts of displacement effects and reinstatement effects. Finally, we use this information

also to build a new shift-share measure of local exposure to robots that does not refer

only to the local industry composition, but it also takes into account the occupational

composition of each industry and the different exposure to robots of each occupation.

Besides being more in line with an interpretation of exposure to robots in terms of tasks

and activities, this measure is also internally consistent with the groups of workers whose

local employment dynamics we study in this work.

From a theoretical viewpoint, as mentioned, our approach is more consistent with the

theoretical task-based production frameworks, whereby tasks are allocated to labor and

capital according to the available technology, whose progress alters labor demand across

professions according to their inherent tasks (Autor et al., 2003; Acemoglu and Autor,

2011; Acemoglu and Restrepo, 2019). From an empirical viewpoint, our methodology
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makes it possible to build consistent measures of local employment dynamics and of local

exposure to robots, thereby reducing the possible mismatch between industry-based mea-

sures of local robots exposure and the employment dynamics of groups of workers formed

on the basis of occupations, skills and tasks. Besides offering greater internal consistency,

this new approach also reduces possible interference in the estimation stemming from the

presence of industry-related confounding factors.

Our empirical results suggest a limited aggregated impact of robot adoption in Italy in

the most recent period of time. Although this finding is at odds with the seminal studies

conducted on the US (Acemoglu and Restrepo, 2020), it is in line with the conclusions

reached with industry-based approaches by Dauth et al. (2017) for Germany and by

Dottori (2021) for Italy. As pointed out by Gentili et al. (2020), the process of robot

adoption and its implications on local labor markets are time-sensitive and depend on

the local socio-economic system. Hence, it should not be controversial that the negative

impact of robots exposure found in the US does not carry over to Germany and Italy.

More interestingly, we show for the first time that the lack of significant effects of

robot adoption on aggregated labor market dynamics hides more complex employment

dynamics for specific groups of workers, when properly identified. Our novel approach to

look at the occupations (at five-digit level) allows us to discern clear signs of reinstate-

ment effects for robot operators, that is workers employed in occupations complementary

to the installation and use of robots. On the other hand, our analysis fails to detect any

significant impact of local exposure to robots on the evolution of the shares of exposed

workers. While this empirical finding may stem from the absence of replacement effects,

due, for instance, to the fact that industrial robots in Europe are only the latest and

marginal iteration of a long-lasting process of industrial mechanisation and automation

(Fernandez-Macias et al., 2021), further empirical work on other sub-groups of occupa-

tions suggest that different forces may be at work. Certain occupations, such as those

performing activities that require an intensive use of the torso, are significantly reduced

by robot adoption; others, such as routine cognitive and non-routine manual occupations,

seem to grow together with robot adoption. This suggests that the lack of significant ef-

fects of local robots exposure on local employment dynamics is probably due both to the

heterogeneous impact of robot adoption on different jobs, and to inappropriate pooling

of professions. In turn, our findings appear consistent with recent microeconomic evi-

dence showing that the firms that install robots also expand employment. Thus, our

findings suggest that future work should focus on the effects of robotization on new

highly disaggregated groups of workers and occupations that can provide a link between

microeconomic and macroeconomic studies.

Our findings suggest the importance of supporting education and training policies that
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focus on the skills associated with the activities carried out by robot operators. Indeed,

investment in human capital is fundamental to generating the skills that complement new

technologies (Autor, 2015). In Italy, whose economy is based on low-skill and low-tech

productions, this is particularly relevant. The case will be even stronger in the aftermath

of the Covid-19 pandemic, as this latter has pushed for a more intense use of robots and

other innovative technologies that can help reduce the risk of contagion (Hantrais et al.,

2020; Caselli et al., 2020b).
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Äı̀2017.

Social Indicators Research: An International and Interdisciplinary Journal for Quality-

of-Life Measurement, 152(2):673–704.

Bessen, J., Goos, M., Salomons, A., and van den Berge, W. (2020). Firm-level automa-

tion: Evidence from the netherlands. AEA Papers and Proceedings, 110:389–93.

Blanas, S., Gancia, G., and Lee, S. Y. T. (2020). Who is afraid of machines? Economic

Policy, 34(100):627–690.

Bonacini, L., Gallo, G., and Scicchitano, S. (2021). Working from home and income

inequality: Risks of a ‘new normal’ with COVID-19. Journal of Population Economics,

34:303–360.
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Tables and figures

Table 1: Balancing tests for effects of local robots exposure on employment dynamics

Employment Unemployment Non-light Private
rate rate manufacturing sector
(1) (2) (3) (4)

∆ RX 0540 0.105 2.486*** 0.147***
(0.419) (0.280) (0.571) (0.066)

Macroarea fixed effects X X X X
Lagged demographic controls X X X X
Lagged industry controls X X X X
Lagged profession controls X X X X

Observations 377 377 377 377

Notes: The dependent variables are: the local employment rate in 2011 in column (1); the local un-
employment rate in 2011 in column (2); the share of non-light manufacturing firms in 2011 in column
(3); the share of workers in the private sector in 2011 in column (4). All regressions are estimated with
the 2SLS estimator. The instrument for robots exposure is measured following a shift-share approach
with lagged weights and growth of robots in Japan, South Korea and the US. Four macroareas are in-
cluded: North-West, North-East, Centre, South and Islands. Lagged control variables are measured in
2011. Lagged demographic controls include the logarithm of the resident population, the share of res-
idents older than 65, the share of female residents, the share of residents with tertiary education, and
the share of foreign-born residents. Lagged industry-related controls include the local exposure to trade
competition from China, the share of employees in the manufacturing sector, the share of employees
in the transportation and logistics industry, and the share of employees that use a personal computer.
Lagged profession controls include the local share of workers occupied as craftsmen, plant operators and
unskilled professionals (categories 6, 7 and 8 of ISCO 08), and the local diffusion of routine occupations.
The estimations are weighted on the basis of the 2011 resident population. Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2: Descriptive statistics

Obs. Mean Std. Dev. Min Max

∆ Unemployment rate 377 0.019 0.040 -0.088 0.167
∆ Employment rate 377 0.017 0.033 -0.120 0.173
∆ Share of robot operators over population 377 0.004 0.007 -0.023 0.055
∆ Share of exposed workers over population 377 0.001 0.016 -0.066 0.079
∆ Robots exposure (applications) 377 0.016 0.009 -0.025 0.113

Notes: All the variable are measured in differences between 2018 and 2011 at the LLMA level and
weighted on the basis of the resident population in 2011. The employment to population ratios for op-
erators and exposed workers are computed with respect to working-age residents (15-74 years old).
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Table 3: Effects of local robots exposure on employment dynamics, OLS

∆ employment ∆ unemployment ∆ operators ∆ exposed
(1) (2) (3) (4)

∆ RX -0.125 0.201 0.074 0.029
(0.226) (0.238) (0.049) (0.136)

Macroarea fixed effects X X X X
Lagged demographic controls X X X X
Lagged industry controls X X X X
Lagged profession controls X X X X

Observations 377 377 377 377
R-squared 0.219 0.273 0.197 0.162

Notes: The dependent variables are the difference between 2018 and 2011 in the employment rate in
column (1), in the unemployment rate in column (2), in the share of robot operators over working-age
population in column (3), and in the share of exposed workers over working-age population in column
(4). All regressions are estimated via OLS. Four macroareas are included: North-West, North-East, Cen-
tre, South and Islands. Lagged control variables are measured in 2011. Lagged demographic controls
include the logarithm of the resident population, the share of residents older than 65, the share of female
residents, the share of residents with tertiary education, and the share of foreign-born residents. Lagged
industry-related controls include the local exposure to trade competition from China, the share of em-
ployees in the manufacturing sector, the share of employees in the transportation and logistics industry,
the share of employees that use a personal computer, the share of local units in non-light manufactur-
ing sectors with at least 50 employees, and the local share of workers employed in the private sector.
Lagged profession controls include the local share of workers occupied as craftsmen, plant operators and
unskilled professionals (categories 6, 7 and 8 of ISCO 08), and the local diffusion of routine occupations.
The estimations are weighted on the basis of the 2011 resident population. Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4: Effects of local robots exposure on employment dynamics I

∆ employment ∆ unemployment
(1) (2) (3) (4)

∆ RX -0.203 0.165 -0.950*** -0.292
(0.312) (0.402) (0.348) (0.398)

Macroarea fixed effects X X X X
Lagged demographic controls X X
Lagged industry controls X X
Lagged profession controls X X

Observations 377 377 377 377
Kleibergen-Paap F stat 149 130.1 149 130.1

Notes: The dependent variable is the difference in employment rates between 2018 and 2011 in columns
(1) and (2), and the difference in unemployment rates between 2018 and 2011 in columns (3) and (4).
All regressions are estimated with the 2SLS estimator. The instrument for robots exposure is measured
following a shift-share approach with lagged weights and growth of robots in Japan, South Korea and
the US. Four macroareas are included: North-West, North-East, Centre, South and Islands. Lagged con-
trol variables are measured in 2011. Lagged demographic controls include the logarithm of the resident
population, the share of residents older than 65, the share of female residents, the share of residents with
tertiary education, and the share of foreign-born residents. Lagged industry-related controls include the
local exposure to trade competition from China, the share of employees in the manufacturing sector, the
share of employees in the transportation and logistics industry, the share of employees that use a personal
computer, the share of local units in non-light manufacturing sectors with at least 50 employees, and the
local share of workers employed in the private sector. Lagged profession controls include the local share
of workers occupied as craftsmen, plant operators and unskilled professionals (categories 6, 7 and 8 of
ISCO 08), and the local diffusion of routine occupations. The estimations are weighted on the basis of the
2011 resident population. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5: Effects of local robots exposure on employment dynamics II

∆ operators ∆ exposed workers
(1) (2) (3) (4)

∆ RX 0.175*** 0.293*** 0.205 0.301
(0.062) (0.095) (0.146) (0.194)

Macroarea fixed effects X X X X
Lagged demographic controls X X
Lagged industry controls X X
Lagged profession controls X X

Observations 377 377 377 377
Kleibergen-Paap F stat 149.0 130.1 149.0 130.1

Notes: The dependent variable is the difference in the share of robot operators over working-age popu-
lation between 2018 and 2011 in columns (1) and (2), and the difference in the share of exposed workers
over working-age population between 2018 and 2011 in columns (3) and (4). The shares are computed
with respect to the working-age resident population (15-74 years old). All regressions are estimated with
the 2SLS estimator. The instrument for robots exposure is measured following a shift-share approach
with lagged weights and growth of robots in Japan, South Korea and the US. Four macroareas are in-
cluded: North-West, North-East, Centre, South and Islands. Lagged control variables are measured in
2011. Lagged demographic controls include the logarithm of the resident population, the share of res-
idents older than 65, the share of female residents, the share of residents with tertiary education, and
the share of foreign-born residents. Lagged industry-related controls include the local exposure to trade
competition from China, the share of employees in the manufacturing sector, the share of employees
in the transportation and logistics industry, the share of employees that use a personal computer, the
share of local units in non-light manufacturing sectors with at least 50 employees, and the local share
of workers employed in the private sector. Lagged profession controls include the local share of workers
occupied as craftsmen, plant operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08),
and the local diffusion of routine occupations. The estimations are weighted on the basis of the 2011
resident population. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: Effects of local robots exposure on employment dynamics, robustness I: Sub-
samples

∆ operators ∆ exposed workers
no big no small no big no small

(1) (2) (3) (4)

∆ RX 0.302*** 0.266*** 0.299 0.236
(0.093) (0.096) (0.202) (0.242)

Macroarea fixed effects X X X X
Lagged demographic controls X X
Lagged industry controls X X
Lagged profession controls X X

Observations 373 301 373 301
Kleibergen-Paap F stat 130.9 134.5 130.9 134.5

Notes: The dependent variable is the difference in the share of robot operators over working-age popu-
lation between 2018 and 2011 in columns (1) and (2), and the difference in the share of exposed workers
over working-age population between 2018 and 2011 in columns (3) and (4). The shares are computed
with respect to the working-age resident population (15-74 years old). The sub-sample “no big” excludes
the four LLMAs with more than 1 million residents, columns (1) and (3); the sub-sample “no small”
excludes the 20% smallest LLMAs, columns (2) and (4). All regressions are estimated with the 2SLS
estimator. The instrument for robots exposure is measured following a shift-share approach with lagged
weights and growth of robots in Japan, South Korea and the US. Four macroareas are included: North-
West, North-East, Centre, South and Islands. Lagged control variables are measured in 2011. Lagged
demographic controls include the logarithm of the resident population, the share of residents older than
65, the share of female residents, the share of residents with tertiary education, and the share of foreign-
born residents. Lagged industry-related controls include the local exposure to trade competition from
China, the share of employees in the manufacturing sector, the share of employees in the transportation
and logistics industry, the share of employees that use a personal computer, the share of local units in
non-light manufacturing sectors with at least 50 employees, and the local share of workers employed in
the private sector. Lagged profession controls include the local share of workers occupied as craftsmen,
plant operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08), and the local diffusion of
routine occupations. The estimations are weighted on the basis of the 2011 resident population. Robust
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 7: Effects of local robots exposure on employment dynamics, robustness II: Un-
weighted

∆ operators ∆ exposed workers
(1) (2)

∆ RX 0.380*** 0.555**
(0.134) (0.253)

Macroarea fixed effects X X
Regional fixed effects X X
Lagged demographic controls X X
Lagged industry controls X X
Lagged profession controls X X

Observations 377 377
Kleibergen-Paap F stat 57.09 57.09

Notes: The dependent variable is the difference in the share of robot operators over working-age pop-
ulation between 2018 and 2011 in column (1), and the difference in the share of exposed workers over
working-age population between 2018 and 2011 in column (2). The shares are computed with respect
to the working-age resident population (15-74 years old). All regressions are estimated with the 2SLS
estimator. The instrument for robots exposure is measured following a shift-share approach with lagged
weights and growth of robots in Japan, South Korea and the US. Four macroareas are included: North-
West, North-East, Centre, South and Islands. Lagged control variables are measured in 2011. Lagged
demographic controls include the logarithm of the resident population, the share of residents older than
65, the share of female residents, the share of residents with tertiary education, and the share of foreign-
born residents. Lagged industry-related controls include the local exposure to trade competition from
China, the share of employees in the manufacturing sector, the share of employees in the transportation
and logistics industry, the share of employees that use a personal computer, the share of local units in
non-light manufacturing sectors with at least 50 employees, and the local share of workers employed in
the private sector. Lagged profession controls include the local share of workers occupied as craftsmen,
plant operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08), and the local diffusion of
routine occupations. The estimations are weighted on the basis of the 2011 resident population. Robust
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 8: Effects of local robots exposure on employment dynamics, robustness III: Error
terms

∆ operators ∆ exposed workers
(1) (2) (3) (4)

∆ RX 0.292*** 0.244*** 0.301 0.243
(0.093) (0.096) (0.202) (0.242)

Macroarea fixed effects X X
Regional fixed effects X X
Lagged demographic controls X X X X
Lagged industry controls X X X X
Lagged profession controls X X X X

Observations 377 377 377 377
Kleibergen-Paap F stat 113.1 141.1 113.1 141.1

Notes: The dependent variable is the difference in the share of robot operators over working-age popu-
lation between 2018 and 2011 in columns (1) and (2), and the difference in the share of exposed workers
over working-age population between 2018 and 2011 in columns (3) and (4). The shares are computed
with respect to the working-age resident population (15-74 years old). All regressions are estimated with
the 2SLS estimator. The instrument for robots exposure is measured following a shift-share approach
with lagged weights and growth of robots in Japan, South Korea and the US. Four macroareas are in-
cluded: North-West, North-East, Centre, South and Islands. Lagged control variables are measured in
2011. Lagged demographic controls include the logarithm of the resident population, the share of res-
idents older than 65, the share of female residents, the share of residents with tertiary education, and
the share of foreign-born residents. Lagged industry-related controls include the local exposure to trade
competition from China, the share of employees in the manufacturing sector, the share of employees
in the transportation and logistics industry, the share of employees that use a personal computer, the
share of local units in non-light manufacturing sectors with at least 50 employees, and the local share of
workers employed in the private sector. Lagged profession controls include the local share of workers oc-
cupied as craftsmen, plant operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08), and
the local diffusion of routine occupations. The estimations are weighted on the basis of the 2011 resident
population. Standard errors in parentheses are clustered at the province level in columns (1) and (3),
while robust standard errors are provided in columns (2) and (4). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 9: Effects of local robots exposure on employment dynamics, robustness IV:
Alternative IV

∆ operators ∆ exposed workers
(1) (2)

∆ RX 0.547*** 0.664**
(0.192) (0.334)

Macroarea fixed effects X X
Lagged demographic controls X X
Lagged industry controls X X
Lagged profession controls X X

Observations 377 377
Kleibergen-Paap F stat 21.01 21.01

Notes: The dependent variable is the difference in the share of robot operators over working-age pop-
ulation between 2018 and 2011 in column (1), and the difference in the share of exposed workers over
working-age population between 2018 and 2011 in column (2). The shares are computed with respect
to the working-age resident population (15-74 years old). All regressions are estimated with the 2SLS
estimator. The instrument for robots exposure is measured following a shift-share approach with lagged
weights and growth of robots in extra-European countries. Four macroareas are included: North-West,
North-East, Centre, South and Islands. Lagged control variables are measured in 2011. Lagged demo-
graphic controls include the logarithm of the resident population, the share of residents older than 65,
the share of female residents, the share of residents with tertiary education, and the share of foreign-
born residents. Lagged industry-related controls include the local exposure to trade competition from
China, the share of employees in the manufacturing sector, the share of employees in the transportation
and logistics industry, the share of employees that use a personal computer, the share of local units in
non-light manufacturing sectors with at least 50 employees, and the local share of workers employed in
the private sector. Lagged profession controls include the local share of workers occupied as craftsmen,
plant operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08), and the local diffusion of
routine occupations. The estimations are weighted on the basis of the 2011 resident population. Robust
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 10: Effects of local robots exposure on employment dynamics, robustness V: PIM

∆ operators ∆ exposed workers
(1) (2)

∆ RX 0.291*** 0.304
(0.098) (0.195)

Macroarea fixed effects X X
Lagged demographic controls X X
Lagged industry controls X X
Lagged profession controls X X

Observations 377 377
Kleibergen-Paap F stat 293.6 293.6

Notes: The dependent variable is the difference in the share of robot operators over working-age pop-
ulation between 2018 and 2011 in column (1), and the difference in the share of exposed workers over
working-age population between 2018 and 2011 in column (2). The shares are computed with respect
to the working-age resident population (15-74 years old). All regressions are estimated with the 2SLS
estimator. The instrument for robots exposure is measured following a shift-share approach with lagged
weights and the growth of robots in Japan, South Korea and the US. Stocks of robot are calculated with
the perpetual inventory method and a 10% depreciation rate. Four macroareas are included: North-
West, North-East, Centre, South and Islands. Lagged control variables are measured in 2011. Lagged
demographic controls include the logarithm of the resident population, the share of residents older than
65, the share of female residents, the share of residents with tertiary education, and the share of foreign-
born residents. Lagged industry-related controls include the local exposure to trade competition from
China, the share of employees in the manufacturing sector, the share of employees in the transportation
and logistics industry, the share of employees that use a personal computer, the share of local units in
non-light manufacturing sectors with at least 50 employees, and the local share of workers employed in
the private sector. Lagged profession controls include the local share of workers occupied as craftsmen,
plant operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08), and the local diffusion of
routine occupations. The estimations are weighted on the basis of the 2011 resident population. Robust
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 11: Effects of local robots exposure on employment dynamics, pre-trends

Lagged ∆ operators Lagged ∆ exposed workers
(1) (2)

∆ RX -0.110 -0.315
(0.106) (0.192)

Macroarea fixed effects X X
Lagged demographic controls X X
Lagged industry controls X X
Lagged profession controls X X

Observations 360 360
Kleibergen-Paap F stat 124.8 124.8

Notes: The dependent variable is the difference in the share of robot operators over working-age pop-
ulation between 2011 and 2004 in column (1), and the difference in the share of exposed workers over
working-age population between 2011 and 2004 in column (2). The shares are computed with respect
to the working-age resident population (15-74 years old). All regressions are estimated with the 2SLS
estimator. The instrument for robots exposure is measured following a shift-share approach with lagged
weights and growth of robots in Japan, South Korea and the US. Four macroareas are included: North-
West, North-East, Centre, South and Islands. Lagged control variables are measured in 2011. Lagged
demographic controls include the logarithm of the resident population, the share of residents older than
65, the share of female residents, the share of residents with tertiary education, and the share of foreign-
born residents. Lagged industry-related controls include the local exposure to trade competition from
China, the share of employees in the manufacturing sector, the share of employees in the transportation
and logistics industry, the share of employees that use a personal computer, the share of local units in
non-light manufacturing sectors with at least 50 employees, and the local share of workers employed in
the private sector. Lagged profession controls include the local share of workers occupied as craftsmen,
plant operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08), and the local diffusion of
routine occupations. The estimations are weighted on the basis of the 2011 resident population. Robust
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 12: Rotemberg weights

Panel A: Negative and positive weights
Sum Mean Share

Negative -0.145 -0.018 0.112
Positive 1.145 0.229 0.888

Panel B: Correlations of Application Aggregates

αa ga β̂a Fa Var(µa)

αa 1
ga 0.513 1

β̂a 0.173 0.094 1
Fa 0.887 0.662 0.252 1
Var(µa) 0.845 0.155 -0.110 0.598 1

Panel C: Top 3 Rotemberg weight applications

α̂a ga β̂a App Share

Machine tending (115) 0.850 0.778 0.275 3.221
Packaging, picking, placing (118) 0.267 1.595 -0.163 0.822
Palletizing (117) 0.016 0.642 0.163 0.500

Notes: This table reports statistics about the Rotemberg weights based on the regression for robot op-
erators. Panel A reports the sum, mean and share of negative and positive Rotemberg weights. Panel
B reports the correlations between the weights (αa), the national component of growth (ga), the just-

identified coefficients from the regression for robot operators β̂a, the first-stage F-statistic of our local
shares of workers associated to robot application a (Fa), and the variation in robot application shares
across locations (Var(µa)). Panel C reports the top three robot applications according to the Rotemberg
weights.
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Table 13: Effects of local robots exposure: activity-based vs industry-based approach

∆ operators ∆ exposed workers
Activity-based Industry-based Activity-based Industry-based

(1) (2) (3) (4)

∆ RX 0.293*** 0.301
(0.095) (0.194)

∆ RXindustry 0.076** 0.102
(0.038) (0.069)

Macroarea fixed effects X X X X
Lagged demographic controls X X X X
Lagged industry controls X X X X
Lagged profession controls X X X X

Observations 377 377 377 377
Kleibergen-Paap F stat 130.1 22.98 130.1 22.98

Notes: The dependent variable is the difference in the share of robot operators over working-age popu-
lation between 2018 and 2011 in columns (1) and (2), and the difference in the share of exposed workers
over working-age population between 2018 and 2011 in columns (3) and (4). The shares are computed
with respect to the working-age resident population (15-74 years old). The local robots exposure is mea-
sured following an activity-based approach in columns (1) and (3) and an industry-based approach in
columns (2) and (4). All regressions are estimated with the 2SLS estimator. The instrument for robots
exposure is measured following a shift-share approach with lagged weights and growth of robots in Japan,
South Korea and the US. Four macroareas are included: North-West, North-East, Centre, South and
Islands. Lagged control variables are measured in 2011. Lagged demographic controls include the log-
arithm of the resident population, the share of residents older than 65, the share of female residents,
the share of residents with tertiary education, and the share of foreign-born residents. Lagged industry-
related controls include the local exposure to trade competition from China, the share of employees in
the manufacturing sector, the share of employees in the transportation and logistics industry, the share
of employees that use a personal computer, the share of local units in non-light manufacturing sectors
with at least 50 employees, and the local share of workers employed in the private sector. Lagged pro-
fession controls include the local share of workers occupied as craftsmen, plant operators and unskilled
professionals (categories 6, 7 and 8 of ISCO 08), and the local diffusion of routine occupations. The
estimations are weighted on the basis of the 2011 resident population. Robust standard errors in paren-
theses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 14: Effects of local robots exposure on employment dynamics, routine

∆ employment shares
RTI RC RM NRM NRCA NRMI NRMIA
(1) (2) (3) (4) (5) (6) (7)

∆ RX 0.248 0.742*** 0.446 0.182 0.149 0.462* 0.122
(0.283) (0.365) (0.354) (0.426) (0.299) (0.271) (0.387)

Macroarea fixed effects X X X X X X X
Lagged demographic controls X X X X X X X
Lagged industry controls X X X X X X X
Lagged profession controls X X X X X X X

Observations 377 377 377 377 377 377 377
Kleibergen-Paap F stat 130.1 130.1 130.1 130.1 130.1 130.1 130.1

Notes: The dependent variable is the difference in the share of workers in the top-third of the distri-
bution of different routine indices between 2018 and 2011: routine-intensive occupations (RTI); routine
cognitive (RC); routine manual (RM); non-routine cognitive: analytical (NRCA); non-routine cognitive:
interpersonal (NRCI); non-routine manual (NRM); non-routine manual: interpersonal adaptability (NR-
MIA). The shares are computed with respect to the working-age resident population (15-74 years old).
All regressions are estimated with the 2SLS estimator. The instrument for robots exposure is measured
following a shift-share approach with lagged weights and growth of robots in Japan, South Korea and
the US. Four macroareas are included: North-West, North-East, Centre, South and Islands. Lagged con-
trol variables are measured in 2011. Lagged demographic controls include the logarithm of the resident
population, the share of residents older than 65, the share of female residents, the share of residents with
tertiary education, and the share of foreign-born residents. Lagged industry-related controls include the
local exposure to trade competition from China, the share of employees in the manufacturing sector, the
share of employees in the transportation and logistics industry, the share of employees that use a personal
computer, the share of local units in non-light manufacturing sectors with at least 50 employees, and the
local share of workers employed in the private sector. Lagged profession controls include the local share
of workers occupied as craftsmen, plant operators and unskilled professionals (categories 6, 7 and 8 of
ISCO 08), and the local diffusion of routine occupations. The estimations are weighted on the basis of the
2011 resident population. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 15: Effects of local robots exposure on employment dynamics, occupations’ fea-
tures.

∆ employment shares
ToI PmI ObI ManI AuI MacI
(1) (2) (3) (4) (5) (6)

∆ RX -.0634** -0.229 -0.030 -0.105 0.546* 0.623*
(0.307) (0.317) (0.334) (0.355) (0.314) (0.335)

Macroarea fixed effects X X X X X X
Lagged demographic controls X X X X X X
Lagged industry controls X X X X X X
Lagged profession controls X X X X X X

Observations 377 377 377 377 377 377
Kleibergen-Paap F stat 130.1 130.1 130.1 130.1 130.1 130.1

Notes: The dependent variable is the difference between 2018 and 2011 in the share of workers in the
top-third of the distribution of various occupations’ characteristics: torso-intensive occupations (ToI);
physical movement-intensive occupations (PmI); manual-intensive occupations (ManI); object-intensive
occupations (ObI); automation-intensive occupations (AuI); machinery-intensive occupations (MacI).
The shares are computed with respect to the working-age resident population (15-74 years old). All
regressions are estimated with the 2SLS estimator. The instrument for robots exposure is measured fol-
lowing a shift-share approach with lagged weights and growth of robots in Japan, South Korea and the
US. Four macroareas are included: North-West, North-East, Centre, South and Islands. Lagged control
variables are measured in 2011. Lagged demographic controls include the logarithm of the resident pop-
ulation, the share of residents older than 65, the share of female residents, the share of residents with
tertiary education, and the share of foreign-born residents. Lagged industry-related controls include the
local exposure to trade competition from China, the share of employees in the manufacturing sector, the
share of employees in the transportation and logistics industry, the share of employees that use a personal
computer, the share of local units in non-light manufacturing sectors with at least 50 employees, and the
local share of workers employed in the private sector. Lagged profession controls include the local share
of workers occupied as craftsmen, plant operators and unskilled professionals (categories 6, 7 and 8 of
ISCO 08), and the local diffusion of routine occupations. The estimations are weighted on the basis of the
2011 resident population. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Figure 1: Changes in local robots exposure across Italian LLMAs, 2011-2018

Notes: The figure reports the change in local robots exposure in 377 Italian LLMAs between 2011 and
2018. Robots exposure is measured following the activity-based approach to match occupations and
robot applications.
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Figure 2: Changes in employment vs changes in robot adoption by application, 2011-
2018

Notes: The figure reports changes in log employment in 13 robot applications in Italy between 2011 and
2018 on the vertical axis and changes in the log number of robots in Italy between 2011 and 2018.
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Figure 3: Changes in robot adoption in Italy vs IV countries (JPKRUS) by application,
2011-2018

Notes: The figure reports changes in the log number of robots in Italy and in the set of countries used
in the main IV (Japan, South Korea and the US) between 2011 and 2018.
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Appendix

A Additional tables and figures

Table A1: Effects of local robots exposure, first stage

∆ RX ∆ RXindustry

(1) (2)

∆ R̃X 0.353***
(0.028)

∆ R̃X
industry

0.319***

Macroarea fixed effects X X
Lagged demographic controls X X
Lagged industry controls X X
Lagged profession controls X X

Observations 377 377
Kleibergen-Paap F stat 130.1 22.98

Notes: First-stage results for the effects of robots exposure on employment dynamics. Four macroareas
are included: North-West, North-East, Centre, South and Islands. Lagged control variables are mea-
sured in 2011. Lagged demographic controls include the logarithm of the resident population, the share
of residents older than 65, the share of female residents, the share of residents with tertiary education,
and the share of foreign-born residents. Lagged industry-related controls include the local exposure to
trade competition from China, the share of employees in the manufacturing sector, the share of employ-
ees in the transportation and logistics industry, the share of employees that use a personal computer, the
share of local units in non-light manufacturing sectors with at least 50 employees, and the local share
of workers employed in the private sector. Lagged profession controls include the local share of workers
occupied as craftsmen, plant operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08),
and the local diffusion of routine occupations. The estimations are weighted on the basis of the 2011
resident population. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A2: Effects of local robots exposure on employment dynamics, weekly hours

∆ operators ∆ exposed workers
(1) (2)

∆ RX 0.470** 0.394
(0.197) (0.386)

Macroarea fixed effects X X
Lagged demographic controls X X
Lagged industry controls X X
Lagged profession controls X X

Observations 377 377
Kleibergen-Paap F stat 130.1 130.1

Notes: The dependent variable is the difference in the share of weekly hours worked by robot operators
between 2018 and 2011 in column (1), and the difference in the share of weekly hours worked by exposed
workers between 2018 and 2011 in column (2). The shares are computed with respect to the working-
age resident population (15-74 years old). All regressions are estimated with the 2SLS estimator. The
instrument for robots exposure is measured following a shift-share approach with lagged weights and
growth of robots in Japan, South Korea and the US. Four macroareas are included: North-West, North-
East, Centre, South and Islands. Lagged control variables are measured in 2011. Lagged demographic
controls include the logarithm of the resident population, the share of residents older than 65, the share
of female residents, the share of residents with tertiary education, and the share of foreign-born resi-
dents. Lagged industry-related controls include the local exposure to trade competition from China, the
share of employees in the manufacturing sector, the share of employees in the transportation and logis-
tics industry, the share of employees that use a personal computer, the share of local units in non-light
manufacturing sectors with at least 50 employees, and the local share of workers employed in the pri-
vate sector. Lagged profession controls include the local share of workers occupied as craftsmen, plant
operators and unskilled professionals (categories 6, 7 and 8 of ISCO 08), and the local diffusion of rou-
tine occupations. The estimations are weighted on the basis of the 2011 resident population. Robust
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A3: Effects of local robots exposure on employment dynamics, hourly pay

∆ HP - all ∆ HP - operators ∆ HP - exposed workers
(1) (2) (3)

∆ RX -0.153 -0.301 0.593
(0.732) (2.402) (1.111)

Macroarea fixed effects X X X
Lagged demographic controls X X X
Lagged industry controls X X X
Lagged profession controls X X X

Observations 377 248 342
Kleibergen-Paap F stat 130.1 132.5 125.8

Notes: The dependent variable is the difference in the average hourly pay between 2018 and 2011 for all
workers in column (1), for robot operators in column (2), and for exposed workers in column (3). All
regressions are estimated with the 2SLS estimator. The instrument for robots exposure is measured fol-
lowing a shift-share approach with lagged weights and growth of robots in Japan, South Korea and the
US. Four macroareas are included: North-West, North-East, Centre, South and Islands. Lagged control
variables are measured in 2011. Lagged demographic controls include the logarithm of the resident pop-
ulation, the share of residents older than 65, the share of female residents, the share of residents with
tertiary education, and the share of foreign-born residents. Lagged industry-related controls include the
local exposure to trade competition from China, the share of employees in the manufacturing sector, the
share of employees in the transportation and logistics industry, the share of employees that use a personal
computer, the share of local units in non-light manufacturing sectors with at least 50 employees, and the
local share of workers employed in the private sector. Lagged profession controls include the local share
of workers occupied as craftsmen, plant operators and unskilled professionals (categories 6, 7 and 8 of
ISCO 08), and the local diffusion of routine occupations. The estimations are weighted on the basis of the
2011 resident population. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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B A new matching approach

Table B1: A new matching approach: Exposed and not exposed

5 digit Occupation Act 1 imp freq Act 2 imp freq Act 3 imp freq IFR code Type

6.1.1.2.0 Stone-cutters Cutting stones 4.5 4.4 Sanding 4.3 3.9 Polishing 4.1 3.8 190 Exposed
stones stones

6.2.2.1.1 Blacksmiths Cutting metals 4.1 4.2 Assembling 4 4.2 Welding and 3.9 3.9 190 Exposed
metal repairing metal
pieces pieces

6.2.1.2.0 Welders and flame Using tools 4.7 4.6 Welding 4.6 4.6 Supervising 4.2 4.2 160 Exposed
cutters pieces machines

6.2.3.6.0 Inspector Identifying 4 3.5 Performing tests 3.9 3.4 Reading 3.8 3.7 Not exposed
mechanics malfunctions or on engines technical

anomalies and machines designs

6.3.4.5.0 Bookbinders Binding 3.9 3.7 Gluing 3.8 3.7 Folding paper 3.8 3.7 Not exposed
and after books materials

print finishers

6.5.3.2.1 Weavers Working on 3.9 3.3 Replacing 3.8 3.4 Maintaining 3.6 2.1 Not exposed
looms threads machinery and

equipment

Notes: IFR robot application: 190 - processing, enduring changing; the robot leads the workpiece or the tool; material removal. 160
- Welding and soldering. 110 - Handling operations/ Machine tending. Act is the abbreviation of activity. Imp is the abbreviation
for importance. Freq is the abbreviation for frequency.

Table B2: A new matching approach: Operators

5 digit Occupation Description Act 1 Act 2 Act 3

2.2.1.3.0 Electrical and factory Design, engineer, control, Verifying Performing Inspecting and
automation engineers manufacture and maintain safety tests producing

systems, motors, apparatus and conditions estimates
equipment (electrical energy)

3.1.4.1.5 Automated assembly Apply procedures and technology Carrying out Signaling Supervising
line management and to control through automated maintenance on anomalies application of

control technicians systems, and manage the operation equipment or safety norms
and safety of automated assembly lines installations

7.1.7.1.0 Automated assembly Lead and control the activity Controlling Supervising Choosing
line operators of automated assembly lines quality process tools

and industrial robots
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C Comparison to existing measures of job replaceability

The idea of exploiting the classification of robots in terms of their applications was first ex-

ploited by Graetz and Michaels (2018) to build an instrumental variable suitable to assess

the relationship between the country-industry exposure to robots and the country-level

evolution of productivity and employment. More precisely, they consider each profession

at the three-digit level (as in the 2000 US Census occupational classification) and attribute

a replaceability value of 1 if the profession’s title corresponds to at least one of the IFR

application categories, and a value of 0 otherwise. Then, Graetz and Michaels (2018)

calculate the share of replaceable professions within each industry and country and use

this variable to instrument the measure of robot adoption across country-industry pairs.28

While sharing the same spirit, as well as the manual approach to the classification

of the occupations, our strategy differs considerably from that in Graetz and Michaels

(2018). The first difference is in the goal. Graetz and Michaels (2018) match US oc-

cupations’ titles and robots’ applications to calculate the national shares of replaceable

professions, but they do not use these shares to build local measures of robots exposure.

As explained in the main text, these measures do not take into consideration the actual

evolution of the stocks of robots. The second difference with their approach is in the

matching method: the association of robot applications with occupations performed by

Graetz and Michaels (2018) is based on the denomination of the professions at a high

level of aggregation (three-digit), whereas we examine the frequency and importance of

the activities characterizing each occupation at the five-digit level. Third, our activity-

based matching approach makes it possible to single out robot operators, predicted to

be complementary to robots, whereas Graetz and Michaels (2018)’s approach is directed

exclusively at identifying the professions at risk of being replaced.

Although our empirical analysis explores the geographical variation in robots expo-

sure within the country, rather than the heterogeneous distribution of the local share of

replaceable occupations, it is interesting to compare our taxonomy of exposed occupa-

tions with those identified by Graetz and Michaels (2018) as susceptible of being replaced

by robots. For the sake of completeness, we also compare our classification of exposed

professions with the automatable jobs proposed by Josten and Lordan (2019), who build

on and refine Autor and Dorn (2013)’s classification of routine occupations, with Frey

and Osborne (2017)’s classification of occupations at risk of automation, and with Webb

(2020)’s classification of occupations exposed to robots based on their tasks and matched

patents related to robotization.

28Their identification strategy is based on the positive correlation between the share of replaceable
occupations at the beginning of the period and the subsequent adoption of robots by country-industry
pairs.
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We start by recalling that we consider an occupation (at the five-digit level) as ex-

posed to robots any time that a robot application matches with one (or more) of its

most relevant and frequent activities. Graetz and Michaels (2018), instead, look at the

titles of three-digit level occupations and assign a replaceability value of 1 if the occu-

pation name contains at least one IFR application. It follows that our approach is more

refined as we can distinguish different types of jobs within the same occupation at the

three-digit level, and this produces a more accurate assessment of the susceptibility of

individual occupations to robotization. To compare the two taxonomies, we need to per-

form some non-trivial adjustments to associate Graetz and Michaels (2018)’s three-digit

level SOC1990 classification with our five-digit level CP2011 classification. We match

795 of our occupational units (OU) with theirs and we assume that a CP2011 OU is

replaceable according to Graetz and Michaels (2018)’s definition if at least half of the

SOC1990 occupations included in that OU are categorized as replaceable. We find that

644 OUs can be identified as not susceptible to robotization in any of the two classifi-

cations. On the other hand, 89 OUs are assessed as exposed to robotization using both

methods. Only 28 OUs are considered as replaceable according to our method, but not

according to Graetz and Michaels (2018)’s approach, whereas we assess as non-exposed

34 OUs that Graetz and Michaels (2018) consider replaceable to robots. To calculate

the correlation between our measures and the dummy variable associated with Graetz

and Michaels (2018)’s approach, we build two variables based on percentages: one is the

percentage of SOC1990 occupations included in a CP2011 OU that Graetz and Michaels

(2018) deem as replaceable; the second one is the percentage of workers in a CP2011 OU

employed in SOC1990 occupations replaceable according to Graetz and Michaels (2018).

The correlation of our variable with the workers-weighted and unweighted measures is

0.71 and 0.74, respectively.29 These are very high correlation rates if one considers the

noise created by the crosswalk from SOC1990 to CP2011. This provides some indirect

evidence on the plausibility of the matching procedure we develop to build the shift-share

measure of local robots exposure.

Another relevant comparison to make regards the classification of automatable jobs

by Josten and Lordan (2019). As before, we first match the OCC90 occupations at the

three-digit level with the CP2011 classification at the five-digit level. Again, OCC90

categories may include several CP2011 OUs, and vicecersa. We match 797 of our 800

OUs with theirs. Assuming that a CP2011 OU is automatable according to Josten and

Lordan (2019) if at least 50% of the OCC90 occupations included in that OU are au-

tomatable, we find that 395 OUs can be identified as not susceptible to automation in any

29These two variables can also be transformed into dummy variables using the 50% threshold. The
correlations become 0.68 and 0.70, respectively.
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of the two classifications. Only 3 OUs are considered as exposed to robots according to

our method, but not susceptible of automation according to Josten and Lordan (2019)’s

approach. We assess as non-replaceable by robots 279 OUs that, instead, Josten and

Lordan (2019) consider as automatable. Finally, 120 OUs are assessed as likely suscep-

tible with both methods. On this basis, we build two variables to capture Josten and

Lordan (2019)’s classification of automatable jobs in terms of CP2011 occupations. One

variable is the percentage of OCC90 occupations included in a CP2011 OU considered as

automatable by Josten and Lordan (2019); the second one is the percentage of workers

in a CP2011 OU who are employed in occupations automatable according to Josten and

Lordan (2019). The correlations between these workers-weighted and unweighted mea-

sures and our dummy variable (taking value 1 for any OU that we consider as exposed to

robots) are, respectively, 0.42 and 0.44.30 Considering that exposure to automation is a

broader and more inclusive concept than exposure to robotization, these high correlation

rates support the reasonableness of our approach based on workers’ activities.

We also compare our classification with that produced by Frey and Osborne (2017),

although it differs remarkably from ours along several dimensions. First, Frey and Os-

borne (2017)’s classification does not adopt an activity-based approach to establish which

occupations are at risk of automation, but it rather exploits the presence (or lack thereof)

of technical features that prevent exposure to full automation.31 Second, they consider

the broader concept of automation rather than robotization. Having clarified these sub-

stantial differences, Frey and Osborne (2017) end up attaching a risk of automation

(ranging from 0 to 1) to 702 (SOC10) occupations depending on the presence of some

key technical features. To compare our activity-based classification with theirs, we first

match the Isco08 four-digit level classification to theirs, and then match the latter to the

five-digit level CP2011 classification. We then identify 731 occupations that are present

in both studies. We generate two variables: one is the average automation (from 0 to

1) for the SOC10 professions included in each CP2011 OU, and the other is a dummy

variable taking value 1 if the risk is above 80%. The correlation between the two mea-

sures and our dummy variable for OUs exposed to robots is 0.37 and 0.41 respectively.

Considering that Frey and Osborne (2017) focus on automation rather than robotization

and that they look at occupations’ features rather than activities, these results provide

additional evidence of the reasonableness of our approach.

30We also build the corresponding dummy variables using the 50% threshold. The weighted and
unweighted correlation indices are equal to 0.36 and 0.41, respectively.

31Frey and Osborne (2017) consult with machine-learning experts and manually classify 70 (out of 703)
occupations in O*NET as either automatable or not. Then, they estimate a probability model on these 70
observations using as explanatory variables nine O*NET variables associated with the main technological
limitations to implementing total automation, and finally based on the estimated parameters they predict
the probability of automation for all the remaining occupations.
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Finally, we conduct a similar comparison between our match between workers’ oc-

cupations and robots’ applications and Webb (2020)’s measure of the exposure of tasks

to robotization based on the overlap between the text of job task descriptions and the

text of patents. As for the previous comparisons, we first match SOC2010 occupations

with the CP2011 classification at the five-digit level. In this case, we obtain a match for

776 CP2011 OUs. Assuming that a CP2011 OU is exposed to automation by industrial

robots according to Webb (2020) if it falls in the top third of the exposure distribution,

we find that 412 OUs can be identified as not susceptible to robotization in any of the

two classifications, while 103 OUs are susceptible with both methods. On the other hand,

only 16 OUs are considered as exposed to robots according to Webb (2020)’s method,

but not exposed according to ours, while we assess as exposed by robots 245 OUs that,

instead, Webb (2020) does not consider as exposed. On this basis, we build two variables

to capture Webb (2020)’s classification of exposed jobs in terms of CP2011 occupations.

One variable is the average exposure of SOC2010 occupations included in a CP2011 OU;

the second one is a dummy equal to 1 if the occupation falls in the top third of the

exposure distribution. The correlations between these measures and our dummy variable

(taking value 1 for any OU that we consider as exposed to robots) are, respectively, 0.23

and 0.36. In addition, Webb (2020) constructs similar measures of exposure to automa-

tion due to software and artificial intelligence. In these cases, the correlation rates are

much lower, 0.19 and 0.21 for software, and 0.01 and -0.01 for artificial intelligence. Thus,

once again, we can conclude that our matching procedure produces reasonable results.
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