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Abstract 

Economists have increasingly recognized the role of genetics in economic outcomes. Epigenetics, 

which studies changes in gene expression without altering DNA sequences, provides insights into 

how socioeconomic environments affect human biology and influence economic behaviors and 

outcomes. This paper explores the application of “epigenetic clocks”, which aggregate epigenetic 

data to predict biological aging and health risks, in economics research. We propose a novel 

integrated measure of epigenetic aging, the Multi EpiGenetic Age (MEGA) clock: several 

epigenetic clocks are combined to reduce measurement error and improve efficiency. Using data 

from the Avon Longitudinal Study of Parents and Children (ALSPAC), we apply the MEGA clock 

in two empirical settings: first, we examine the association between longitudinal exposure to child 

abuse and epigenetic age acceleration in adolescence; second, we test the association between 

epigenetic age acceleration and early-adulthood cognitive and socioemotional outcomes. Our 

findings reveal that (i) exposure to child maltreatment before adolescence is associated with half 

a year of accelerated epigenetic aging and that (ii) epigenetic aging predicts moderately worse 

cognitive and socioemotional outcomes in early adulthood. These results highlight the usefulness 

of epigenetic aging as a metric for understanding the long-term effects of early-life adversity and 

inform economic policies targeting public health and productivity. 
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1. Introduction 

Economists have long recognized the importance of genetics in shaping economic outcomes, 

supported by extensive evidence from twin and adoption studies (e.g. Leibowitz 1974, Goldberger 

1976, Taubman 1976, Beauchamp et al., 2017; Björklund et al., 2006; Cesarini et al., 2010), as 

well as recent advances in behavioral genetics (e.g. Okbay et al., 2022; Abdellaoui et al. 2023, 

Benjamin et al. 2007, 2024) and their integration in economics (e.g. Papageorge and Thom, 2020; 

Houmark et al., 2024). While genetic variants are fixed at conception, genetic expression is not. 

Epigenetics, the study of changes in gene expression without alterations to the DNA sequence, is 

one of the ways in which the environment (nurture) can affect human biology (nature). Epigenetic 

modifications can happen as a result of exposures to adverse socioeconomic environments (Cole 

2009), which leave a lasting biological footprint (Szyf 2009). While traditionally the domain of 

biologists, epigenetics is also conceptually relevant to economists and other social scientists, as it 

provides insights into how environmental exposures, such as socioeconomic status and stress, can 

have lasting biological impacts that influence economic behaviors and outcomes (Neu, 2023). 

Understanding these epigenetic influences can provide insights into the long-term impacts of 

economic policies and social environments on public health and productivity. 

One of the most promising epigenetic tools are ‘epigenetic clocks’, which aggregate DNA 

methylation data to predict biological aging, mortality, and disease risk. Chronological age alone 

has been shown to be an unreliable predictor of physiological functioning, due to individual 

differences in biological aging (Kotschy et al., 2024). Summarizing complex epigenetic 

information, these clocks offer a quantifiable measure of biological age that can be more predictive 

of health outcomes than chronological age, providing a valuable metric for both biological and 

social-science research. However, the development and implementation of various epigenetic 

clocks presents a major challenge (Bell et al., 2019). While aimed at capturing the same latent 

concept of epigenetic aging, the algorithms used to define different epigenetic clocks diverge in 

terms of methodology and selection of relevant epigenetic sites – leading to inconsistencies and 

measurement error.  

Here, we provide an illustration of the use of epigenetic clocks in economics research, leveraging 

epigenetic and behavioral data from a large cohort of children in the UK, the Avon Longitudinal 

Study of Parents and Children (ALSPAC). Our first contribution is to propose a methodological 
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framework that combines several existing clocks into a single metric, which we interpret as an 

improved and more robust measure of latent epigenetic age: the Multi EpiGenetic Age (MEGA) 

clock. We do so by integrating four well-established clocks (Horvath, 2013; Hannum et al., 2013; 

Levine et al., 2018; Lu et al., 2019), each trained to predict different aspects of aging and health. 

By leveraging different methods, such as exploratory factor analysis and Structural Equation 

Modeling (SEM), our method is effective in reducing measurement error inherent to individual 

clocks and increasing efficiency, providing a more accurate measure of epigenetic age. With the 

increasing availability of pre-computed epigenetic clocks in large individual-level datasets, this 

combined metric is particularly easy to implement without in-depth knowledge of the biology 

behind the single clocks. It also retains the intuitive age-scale of epigenetic clocks, making it 

directly comparable to chronological age.  

Individuals whose epigenetic age is higher than their chronological age are aging at a faster speed 

biologically than they are chronologically: this is age acceleration. Our second contribution 

consists of two novel empirical applications that illustrate how the MEGA clock can be used to 

study the determinants and consequences of accelerated epigenetic aging. First, we examine the 

impact of longitudinal exposure to child abuse on epigenetic age acceleration in late adolescence. 

Prior research, such as the ALSPAC study by Lawn et al. (2018), has shown that child abuse is 

associated with modifications across the whole epigenome. We provide novel evidence to 

specifically address whether the epigenetic modifications associated with child abuse translate into 

faster epigenetic aging. We do so by investigating the longitudinal relationship between child 

abuse and epigenetic aging, considering different abuse trajectories and critical periods of 

exposure. Our results show that exposure to child maltreatment before adolescence is associated 

with half a year of accelerated epigenetic aging, an effect comparable to about half the magnitude 

of the age-acceleration premium for being female.  

These effects are likely to be consequential for young people’s health and wellbeing. Faster 

epigenetic aging has been shown to be predictive of numerous outcomes, such as mortality, disease 

incidence, and cognitive performance in children. In our second empirical application, we 

contribute to this literature by investigating the association between age acceleration and human 

capital (Heckman et al., 2006; Cunha et al., 2010). The biological processes linked to accelerated 

epigenetic aging – which include, among others, the regulation of the immune system, lipid 
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function, and neuronal pathways (Han et al., 2018; Lu et al., 2019) – may well be detrimental to 

the formation of cognitive and non-cognitive skills. In particular, we include the MEGA clock as 

an input in the human capital production function, hypothesizing that adolescents who are age-

accelerated display worse cognitive and non-cognitive outcomes in early adulthood – after 

controlling for family background, past cognitive and non-cognitive skills and past health. Our 

results suggest that epigenetic age acceleration in adolescence predicts fewer years of education 

and worse mental-health and employment outcomes, above and beyond traditional health 

biomarkers (e.g. BMI) and health behaviors (e.g. smoking and drinking).  

We make several important contributions.  First, we advance the literature on epigenetic clocks, 

through a methodological innovation aimed at reducing measurement error and minimizing the 

probability of type-2 error, thereby enhancing the reliability and efficiency of epigenetic age 

measurement. There are several current limitations of the literature employing epigenetic clocks, 

some of which we overcome with the MEGA clock. These include the arbitrary choice of one 

clock over others, the limited replicability of results across different clocks and limited statistical 

power. To the best of our knowledge, this is the first study to build an integrated epigenetic clock 

based on other clocks. Recently, Martinez et al. (2024) have proposed a complementary, yet 

distinct, approach: using a battery of biomarkers, including epigenetic clocks, and confirmatory 

factor analysis, they identify three factors interpretable as epigenetic age, systemic biological age, 

and immune age.  

Second, our work fits in the literature on early life adversity and epigenetic clocks, as exemplified 

by systematic reviews like those by Cecil et al. (2020) and Rubens et al. (2023). Using data from 

ALSPAC mothers, Lawn et al. (2018) find that sexual abuse experienced by the age of 17 is 

associated with a 3.4 years higher epigenetic age in adulthood (Horvath clock), after adjusting for 

childhood and adulthood socio-economic positioning. Marini et al. (2020) look at early childhood 

DNAm in ALSPAC children and find that sexual and physical abuse, especially during early and 

middle-childhood sensitive periods, are associated with accelerated epigenetic aging at age 7. The 

effect is driven by girls and is only found when using the Hannum rather than the Horvath’s clock. 

Unlike previous studies, we incorporate dynamic trajectories and measures taken across different 

developmental periods, adding a temporal dimension to our analysis. While a similar longitudinal 

approach can be found in Lussier et al. (2023), these authors examined broad changes to the 
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epigenome associated with abuse; our focus on the portion of the epigenome that predicts aging, 

disease and mortality (as captured by the MEGA clock) contributes to a more nuanced 

understanding of the epigenetic footprint of child adversity. 

Through our second empirical application, we additionally contribute to studying the 

consequences of epigenetic age acceleration. Age acceleration has been shown to be predictive of 

all-cause mortality (Faul et al., 2023; Lu et al., 2019; Perna et al., 2016) and the occurrence of 

diseases such as cancer (Horvath, 2013; Dugué et al., 2018; Perna et al., 2016), Alzheimer’s 

disease (McCartney et al., 2018), and healthcare utilization (Davillas and Jones, 2024). In children, 

age acceleration has been shown to display negative association with test-scores (Niccodemi et al., 

2022), cognitive functioning (Raffington et al., 2023a), and to increase social disparities in mental 

health (Raffington et al., 2023b). Our focus on young adults contributes to the understanding of 

the early adulthood consequences of accelerated epigenetic aging. 

From an economics standpoint, our study contributes to the literature on the adverse health 

consequences of child abuse (Currie and Spatz Widom, 2010; Fletcher, 2009; Henkaus, 2022; 

Suglia et al., 2014). On top of using a biomarker of aging that is still new to the health economics 

literature (epigenetic age), we additionally incorporate information from various raters (i.e., 

mothers, fathers, and children) to enhance the accuracy of measuring sensitive constructs like child 

abuse. Finally, our life course approach maps out the experiences of childhood and adolescence, 

providing a comprehensive view of how early-life conditions influence biological aging and 

subsequent outcomes. This holistic perspective bridges gaps in this literature (e.g. Korous et al., 

2023; Petrovic et al., 2023), offering new insights into the interplay between environmental factors 

and biological processes over time. 

The remainder of the paper is organized as follows. Section 2 provides description of the epigenetic 

clocks, with a review of the causes and consequences of accelerated epigenetic aging. Section 3 

provides the methodological framework of the MEGA clocks, while Section 4 introduces the 

ALSPAC data and estimation sample. Section 5 first describes the empirical features of the MEGA 

clocks and then presents the empirical strategy and results for each of the two empirical 

applications. Last, Section 6 advances some hypotheses of mechanisms, and Section 7 concludes. 
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2. Epigenetic clocks 

All humans age, but the rate at which we do differs considerably from person to person. This 

deviation between the “rate of ageing” and chronological age is referred to as “biological age”. 

Biological aging is associated with progressive loss of function at the cellular, tissue, and organ 

levels, further promoting the general decline in physical functioning and cognitive performance 

(López-Otín et al., 2013). One well-studied mechanism is that of epigenetics, namely the ensemble 

of reversible chemical and structural alterations to the genome that can lead to long-term changes 

in gene activity without altering the underlying DNA sequence itself (Klengel et al., 2014). The 

most studied form of epigenetics is DNA methylation (DNAm).1 This process happens when a 

methyl group binds to the DNA strand at a CpG site (a region in DNA where a cytosine nucleotide 

is adjacent to a guanine nucleotide, with one phosphate in between), leading to inhibited gene 

expression. 

The biological age of a person is a more accurate measure of an individual’s functional capacity 

compared to their actual chronological age, and studies have found evidence of age-related hypo- 

or hyper-methylation within specific CpG sites or islands. This has laid the foundation for the 

development of epigenetic biomarkers of aging, also referred to as epigenetic clocks. Epigenetic 

clocks use supervised machine-learning algorithms, such as penalized elastic net regression, to 

estimate biological age based on read-outs from tens or hundreds of DNAm sites across the 

genome. 

The first two widely used epigenetic clocks, Horvath’s DNAmAge clock and Hannum’s clock, 

were developed in 2013 to predict chronological age. The Horvath clock, the first epigenetic age 

predictor, was based on a programmed algorithm to identify age-related signals and was based on 

the combined methylation status of 353 CpG sites. This was developed as a multi-organ clock that 

predicted age from embryo to old age, from data on many tissues and organs (e.g. whole blood, 

cerebellum, colon, kidney, liver, lung). The Hannum clock was developed on blood-based DNAm; 

using elastic net regression to predict individual chronological age, the clock 71 identified CpG 

 
1 While other forms of epigenetic changes exist (e.g. histone modification), current biotechnologies have become 

increasingly cost-efficient in the stabilization and extraction of DNAm from human tissues. As a result, there is a 

wealth of data and well-characterized tools available for studying DNAm. 
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sites that can be used to accurately predict age (Hannum et al., 2013). Compared with Horvath’s 

epigenetic clock, epigenetic age estimated by Hannum’s epigenetic clock shows higher accuracy 

in the prediction of blood samples from adults. Since the model was only trained in whole-blood 

samples from adults, estimates of Hannum epigenetic age have been shown to be biased when 

applied in non-blood tissues (Simpkin et al., 2016, Simpkin et al., 2017) and in children (Hannum 

et al., 2013).  

It has been argued that these “first-generation” clocks may exclude CpGs whose methylation 

patterns may reflect variations in biological age, because the algorithms were trained against 

chronological age. For example, the algorithm underlying these two clocks was programmed to 

detect age-dependent patterns and could perfectly predict chronological age. However, the better 

the predicted chronological age was, the worse the predicted mortality rate was (Zhang Q et al, 

2019).  

In recent years, a second generation of DNAm-based biomarkers for aging has been developed, 

capturing CpGs associated with the functional stage – along with chronological age. In 2018 

Levine developed the PhenoAge clock, which was trained to predict not only chronological age 

but other aging-related indicators (e.g. blood glucose, liver and kidney markers of function).2 This 

clock, while being a good predictor of chronological age, has been extensively shown to predict 

age-related health outcomes better than the first-generation clocks and allows to differentiate 

morbidity and mortality risks of individuals with the same chronological age (Levine et al., 2018). 

Later, Horvath developed the GrimAge which superseded the previous clocks in predicting both 

age-related disease as well as mortality. GrimAge is a linear combination of DNAm-based 

surrogate biomarkers for health-related plasma proteins, smoking pack-years, sex, and 

chronological age. It was a stronger predictor of lifespan, age-related conditions, disease, and 

mortality risk compared to the widely used Horvath’s DNAmAge (Lu et al., 2019).  

In different epigenetic clocks, the number of age-related CpGs forming the predictor varies 

(Horvath: 353 CpGs, Hannum: 71 CpGs, PhenoAge: 513 CpGs, GrimAge: 1030 CpGs), as do the 

CpGs included in the model. For instance, only 41 of the 513 CpGs that construct PhenoAge are 

 
2 The model combined 10 clinical characteristics, including chronological age, albumin, creatinine, glucose, C-reactive 

protein levels, lymphocyte percentage, mean cell volume, red blood cell distribution width, alkaline phosphatase, and 

white blood cell count. Based on 513 age-related CPGs on 3 chips (27 K, 450 K, 850 K), the DNAm PhenoAge has 

achieved greater applicability across chip platforms than other clocks. 



8 
 

the same as Horvath’s clock; PhenoAge and the Horvath’s clock share as few as 5 CpGs with 

Hannum’s clock (Levine et al., 2018).3  

Age acceleration is computed as the discrepancy between chronological age and epigenetic age. 

The most common approach to do so is to measure age acceleration as residuals from a regression 

of epigenetic age on chronological age. This is the approach we adopt in this paper: our empirical 

specifications in Section 3.3 always keep chronological age constant, so that epigenetic age is 

interpretable as epigenetic age acceleration.  

3. From several clocks to one latent construct: the MEGA clock 

Different epigenetic clocks capture different aspects of the biological processes linked to aging, 

disease onset and all-cause mortality. Drawing from the social-sciences literature on the 

measurement of latent factors, here, we propose a novel way to harness the information coming 

from different epigenetic clocks into a unique measure of epigenetic aging. In the current study, 

we focus on two first-generation clocks (the Horvath and the Hannum clocks), trained to predict 

chronological age, and two second-generation clocks (the PhenoAge and GrimAge clocks), trained 

to predict lifespan/functional stage. The rationale for focusing on these four specific clocks is 

twofold. On the one hand, their robustness and replicability have been shown extensively across a 

variety of samples and tissues (Lu et al., 2019; Maddock et al., 2020; McCrory et al., 2021). On 

the other hand, they all rely on genome-wide DNAm data derived from Illumina arrays and are 

estimated using similar methods (i.e. penalized elastic net algorithms). If different epigenetic 

clocks truly capture different facets of the molecular physiological determinants of aging and 

diverse aspects of health, then combining the information across these four clocks will reduce 

measurement error, leading to a more robust, holistic measure of DNAm age: the Multi EpiGenetic 

Age (MEGA) clock. 

We here define three versions of the MEGA clock, each varying in the strength of their underlying 

assumptions. While in the empirical applications we will rely on the four clocks defined above, 

the procedures described below are generalizable to any set of epigenetic clocks. The first, 

 
3 It is suggested that models with a large number of CpG inclusions are more robust and accurate than those with 

fewer CpG inclusions (Li et al., 2015; Lin et al., 2016). However, the epigenetic clocks measure the comprehensive 

properties of the methylome, and the most robust model can be obtained by including a moderate number of age CpGs 

(Horvath and Raj, 2018). 
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MEGAWGT, is a weighted index approach based on Anderson (2008). Here, clocks are combined 

as a weighted sum, with weights being the row-sums of the inverse variance-covariance matrix of 

the clocks. Let {𝐶1, … , 𝐶𝐾} be a set of epigenetic clocks, all expressed in the same unit (years of 

age) and 𝑀 their variance-covariance matrix. Let 𝐼𝐾 be a vector of ones, of length K. The MEGAWGT  

clock is defined as: 

𝑀𝐸𝐺𝐴𝑊𝐺𝑇 =
∑ 𝑤𝑘,1𝐶𝑘 𝐾

𝑘=1

∑ 𝑤𝑘,1
𝐾
𝑘=1

(1) 

Where 𝑤𝑘,1 is the k-th element of vector 𝑤 = 𝑀−1𝐼𝐾. As described in Anderson (2008), this 

weighting procedure is analogous to the joint estimation of seemingly unrelated regression models 

of all outcomes on the treatment indicator, constraining all coefficients to be equal, and 

corresponds to an efficient Generalized Least Squares (GLS) estimator. 

The second, MEGAFA, is instead based on exploratory Factor Analysis (FA), commonly used to 

identify a latent construct based on a set of measurements. It is a data-driven method that aims to 

explain the observed variability in the data by grouping variables that tend to co-vary and 

extracting a smaller number of latent factors that account for the patterns in the observed variables. 

From a theoretical standpoint, since {𝐶1, … , 𝐶𝐾} are selected to capture the same latent concept of 

epigenetic age, we expect only one factor to be retained by the exploratory FA. We interpret this 

factor as the MEGAFA, a more flexible version of the MEGAWGT that allows weights to reflect not 

only the correlation structure of the single clocks, but also their factor loadings. Let 𝐿𝐾 be the 

vector of factor loadings for each of the K clocks. Then MEGAFA is defined similarly to MEGAWGT 

as: 

𝑀𝐸𝐺𝐴𝐹𝐴 =
∑ 𝑢𝑘,1𝐶𝑘 𝐾

𝑘=1

∑ 𝑢𝑘,1
𝐾
𝑘=1

 (2) 

Where 𝑢𝑘,1 is the k-th element of vector 𝑢 = 𝑀−1𝐿𝐾. 

Last, MEGASEM, is based on Structural Equation Modelling (SEM) and relies on the strongest 

assumptions. The advantage of SEM is that it allows to simultaneously model both observed and 

latent variables and their direct relationships, as well as error terms. Informed by the FA, we then 

estimate the MEGASEM clock as the latent factor of a measurement equation based on the individual 
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clocks, while simultaneously modelling its relationship with child abuse in the behavioral (or 

structural) equation. The measurement equation can be illustrated as follows: 

𝐶𝑘 = 𝜆𝑘 𝐸𝐴∗ + 𝜀𝑘, 𝑘 = 1, … , 𝐾 (3) 

Where 𝐶𝑘, the k-th epigenetic clock, can be seen as an indicator of latent epigenetic age, denoted 

𝐸𝐴∗. 𝜆𝑘 is the factor loading parameter and 𝜀𝑘 is an stochastic error term. 

In addition, we assume that the latent epigenetic age is linearly dependent on a vector of observable 

covariates, 𝑋 = {𝑋1, … , 𝑋𝑃}. We can therefore specify the following behavioral equation: 

𝐸𝐴∗ = 𝑋′𝛾 + 𝜔 (4) 

Where 𝛾 is a 𝑃 × 1 vector of parameters and 𝜔 is an idiosyncratic error term. Plugging Equation 

(4) into Equation (3), we are thus able to estimate a system of k reduced form regressions of the 

kind: 

𝐶𝑘 = 𝜆𝑘 𝑋′𝛾 + 𝜆𝑘𝜔 + 𝜀𝑘, 𝑘 = 1, … , 𝐾 (5) 

Conditional on the behavioral equation being correctly specified, SEM is generally more efficient 

because it use all the data at once to estimate parameters. This simultaneous estimation minimizes 

potential information loss and takes into account the full covariance structure of the data. 

The estimation of the three methods outlined above with commonly used statistical software (e.g. 

Stata, R) automatically entails the standardization of the variables used to build the latent factor 

or, in the case of MEGASEM, the expression of the latent factor in the same scale of the predicted 

value of the first clock included in the measurement equation.4 However, one of the advantages of 

epigenetic clocks is their interpretability in years of age, a metric that is both simple and of great 

public-policy relevance. In order to bring the MEGA clocks back to a unit of measure that can be 

interpreted in terms of years of age, we adopt a ‘de-standardization’ procedure, by manually 

computing the weighted averages in Equations (1) and (2) leaving the clocks {𝐶1, … , 𝐶𝐾} in their 

natural scale, years of age. 

 
4 Here, we use Stata v. 17, and commands “sem” for MEGASEM , “factor” for MEGAFA and “egen weightave” for 

MEGAWGT. 
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By combining information from different clocks, the approach we propose offers the advantage of 

reducing the measurement error linked to each clock individually, thus allowing us to capture the 

process of epigenetic aging more precisely. Given that epigenetic data availability is often afflicted 

by relatively small sample sizes, minimizing measurement error becomes particularly 

advantageous. This reduction has the potential to decrease the probability of type-two error, by 

mitigating the risk of attenuation bias in the estimation of the coefficients of interest. 

4. The Avon Longitudinal Study of Parents and Children  

4.1. Data Overview 

The data for the proposed work originate from the Avon Longitudinal Study of Parents and 

Children (ALSPAC), also known as “Children of the 90s”, an English birth cohort study designed 

to explore the effects of genetic, environmental, and social factors on the health and development 

of children and their families. The study initially enrolled over 14,000 pregnant women residing 

in the county of Avon, UK, with expected delivery dates between April 1991 and December 1992, 

resulting in 14,062 live births and 13,988 children surviving to one year of age. In the late 1990s, 

additional eligible mothers and children who had not joined the initial waves were recruited, 

bringing the total sample size to 15,447 pregnancies and 14,901 children alive at one year of age. 

This included 14,833 unique mothers as of September 2021, following further phases of 

recruitment. 

ALSPAC employs a longitudinal design with multiple follow-up visits at key developmental 

stages. Data collection encompasses questionnaires, clinical assessments, biological sampling, and 

linkage to administrative records. This comprehensive approach captures a wide array of 

information, including physical and mental health, cognitive abilities, socioeconomic factors, and 

environmental exposures (Boyd et al., 2013; Fraser et al., 2013; Northstone et al., 2019, 2023). 

Biological data collection includes genetic and epigenetic information, with blood samples taken 

at various time points. Longitudinal DNAm data for 1,022 children and their mothers have been 

collected using Illumina Infinium 450k methylation arrays. For children, DNAm was extracted 

from cord blood samples at birth and from peripheral blood samples at child ages 7 and 15-19 

years. See Relton et al. (2015) for a detailed description of the Accessible Resource for Integrated 

Epigenomic Studies (ARIES), the sub-cohort of ALSPAC with DNA methylation data. 
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Study data were collected and managed using REDCap electronic data capture tools hosted at the 

University of Bristol (Harris et al., 2009). REDCap (Research Electronic Data Capture) is a secure, 

web-based software platform designed to support data capture for research studies. The ALSPAC 

study website contains detailed information on all the available data, through a fully searchable 

data dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/).5  

4.2. Parameterizing Child Abuse and Epigenetic Age 

Of particular interest for this paper are two features of the ALSPAC dataset: the longitudinal 

availability of measures of child abuse and the collection of DNAm data. Based on the former, we 

are able to compute comprehensive measures of exposure to child abuse in different developmental 

stages, based on ratings from parents and children. The latter instead allows us to build epigenetic 

clocks, in order to test whether experiences of abuse throughout childhood correlate with 

accelerated epigenetic aging in late adolescence. 

Child abuse. For child abuse, ALSPAC prospectively collected questions on child cruelty from 

mothers (𝑀) and their partners (𝑃).6 Caregivers were asked to report physical and emotional 

cruelty towards the child coming from themselves or their partners several times throughout the 

data collection period.7 In order to make carer-reported data more comparable to self-reported data 

on child abuse (described in the paragraph below), we define two developmental periods: one 

ranging from age 0 to 10 and the other from age 11 to 18. We then combine the carer-reported 

cruelty across periods and, for each rater 𝑟 and period 𝑡, with 𝑟 ∈ {𝑀, 𝑃} and 𝑡 ∈ {(0 − 10), (11 −

18)}, we define exposure to cruelty as a binary variable equal to one if rater 𝑟 reported any 

instances of child physical or emotional cruelty across the given period 𝑡 and zero otherwise. 

 
5 Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research 

Ethics Committees. Informed consent for the use of data collected via questionnaires and clinics was obtained from 

participants following the recommendations of the ALSPAC Ethics and Law Committee at the time. Consent for 

biological samples has been collected in accordance with the Human Tissue Act (2004). 
6 Similar question on whether the child was exposed to sex abuse from anyone were collected too. However, due to 

the sensitive nature of these questions for parents, we have opted not to include them in this analysis. 
7 Mothers and their partners were asked to report child cruelty in the periods corresponding to the following child 

ages: 8 months (since birth), 1.75 years (since age 8 months), 2.75 years (since age 18 months), 4 years (since age 

2.5), 5 years (in past year), 6 years (since age 5), 9 years (since age 8), 9-10 years, 11 years, and 17-18 years. While 

we have reports from mothers in all periods mentioned above, we only observe reports of child cruelty from the 

mothers’ partners at child ages 6 years, 9-10 years and 11 years. 

http://www.bristol.ac.uk/alspac/researchers/our-data/
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Once cohort children reached adulthood (22+ years), they were also retrospectively asked to report 

any instances of physical or sexual abuse. These retrospective questions asked for the frequency 

adults in the family were violent towards the study child in two time windows: before the age of 

11 and between the ages of 11 and 17. These questions, rated on a 5-point Likert scale from 1 

‘Never’ to 5 ‘Very often’, are shown in more detail in the first six rows of Table A1, together with 

the value used as a cutoff for dichotomization. We build a measure of child self-reported cruelty 

in each of the two developmental periods that is equal to one if at least one of the six dichotomized 

self-reported cruelty variables is equal to one, and zero otherwise. Study children were also asked 

about sex abuse over the same two time periods (see last two rows of Table A1 for more details 

on the questions). Similar to before, we build one binary indicator of self-reported sex abuse for 

each developmental period, equal to one if the study child reported having experienced any sexual 

abuse at least once and zero otherwise.  

Figure 1 shows the correlation between child and parent reported measures of child abuse for all 

ALSPAC children for whom the variables above are non-missing. While there are strong 

intertemporal and cross-dimensional correlations between reports from the same rater, cross-rater 

correlations are positive but lower in magnitude.8 This is consistent with the literature on parental 

reporting versus child self-reporting of adverse childhood experiences, which highlights 

substantial discrepancies in reporting of instances of abuse. Caregiver reports often understate the 

severity and frequency of adverse events compared to children’s self-reports, whether the caregiver 

is reporting their own or their partner’s behavior (Fisher et al., 2011). Sibling corroboration 

indicates that self-reports are reliable. Newbury et al. (2018) and Baldwin et al. (2019) show that 

prospective parental reports and retrospective self-reports identify largely non-overlapping groups 

of maltreated individuals, with self-reports showing stronger associations with psychiatric 

problems. Using ALSPAC data, Houtepen et al. (2018) find that critical events like sexual abuse 

are underreported by parents, suggesting that children’s self-reports might hold additional value. 

Soares et al. (2021) exclusively use retrospective self-reports due to the limitations of prospective 

parental data, while Warren et al. (2019) combine both, finding self-reports more significant in 

cases of sexual abuse. In light of the findings from the literature in developmental psychology 

described above, here, we adopt a comprehensive approach including both self-reports and 

 
8 The correlation table looks similar when restricting the sample to children with available DNAm information, which 

is how we define the estimation sample used to produce the main results of this paper (see Figure A1). 
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prospective parental reports to capture the full spectrum of childhood maltreatment, accounting 

for potential underreporting by parents and minimizing measurement error. 

DNAm. Based on DNAm data, we calculate the epigenetic ages from the following four epigenetic 

clocks: Horvath (Horvath, 2013), Hannum (Hannum et al., 2013), PhenoAge (Levine et al., 2018) 

and GrimAge (Lu et al., 2019).9 We  first combine these clocks, in a novel approach to the 

measurement of epigenetic age (described in Section 3), and then use them separately, to test the 

validity of our approach. 

4.3. Estimation Sample 

The final estimation sample consists of 448 observations with available information on DNAm 

and measures of child abuse. Table 1 shows the prevalence of abuse in the estimation sample in 

two developmental periods (age 0-10 and age 11-18), as rated by the mother (header ‘M’), the 

mother’ partner (‘P’), the child (‘C’), and all possible combination of these three raters. Child 

abuse is divided between instances of child cruelty (emotional and physical), sex abuse and a 

combination of the two (‘Any child abuse’). As we only have access to self-reported data on 

childhood sex abuse, in the ‘Sex abuse’ rows all cells but those in column (C) are empty.10 

Instances of child cruelty between child ages 0 and 10 range between 2% to 23% in the sample, 

depending on the rater – with children reporting higher prevalence than parents. When combining 

all raters together (our preferred measure), the prevalence of child cruelty goes up to 33.7%. 

Combining this with the 3.6% self-reported cases of sex abuse leads to up to 34.8% of children in 

the sample having experienced some form of emotional and/or physical cruelty or sex abuse before 

turning 11 years old.11 When looking at abuse during adolescence (from age 11 onwards), we find 

again that children report more instances of abuse as compared to their parents, with the total 

number of those exposed to any form of abuse according to any rater reaching almost 20%. There 

is a relatively large persistence of abuse over time: 15.6% of children in the sample have 

experienced some form of abuse in both developmental periods, suggesting that almost half of 

 
9 As standard in the literature, we compute GrimAge using the PCGrimAge algorithm (Higgins-Chen et al., 2022). 
10 ‘Any child abuse’ is thus computed in each column using the ‘Child cruelty’ measure from the (group of) rater(s) 

indicated in the column and child-reported sex abuse. 
11 The relatively high incidence of child abuse could be explained by the socio-economic gradient in parents’ reports. 

High-SES parents, which are disproportionately represented in the ALSPAC cohort, tend to report being cruel to their 

children more often than low-SES parents. In order to limit confounding coming from this source, all regressions in 

Section 5 control for maternal education and paternal social class. 
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those experiencing abuse in early childhood (0-10 years old) are also victim of abuse in 

adolescence. 

Statistics describing the socio-demographic characteristics of the estimation sample, compared to 

the full ALSPAC sample, are reported in Table A2. As documented by Relton et al. (2015), 

children in the epigenetic subsample of the data come from positively selected families in terms 

of socio-economic characteristics. Standard t-tests of differences in means between our estimation 

sample and the general ALSPAC sample (reported in column 3 of Table A2) reveal that children 

in our sample are more likely to have slightly older and more educated mothers, and fathers with 

a higher social class, as compared to the average ALSPAC child. On top of this, our sample has a 

small gender unbalance (62% of girls as compared to boys) and is made up of a larger share of 

first-born children (50% against 44% on average). 

5. Main Results 

5.1. Features of the MEGA clocks 

While computing MEGAWGT is fairly straightforward, MEGAFA relies on a theoretical assumption: 

only one factor, which we interpret as a measure of latent epigenetic age, retained from the 

exploratory factor analysis. When performing factor analysis in our estimation sample using the 

four epigenetic clocks described above (Horvath, Hannum, PhenoAge and GrimAge), only one 

factor appears to explain more variance in the data as compared to each single clock individually, 

i.e. only one factor satisfies the Kaiser criterion of having eigenvalue greater than one (Kaiser, 

1960).12 As shown in Table A3, all four clocks display factor loadings larger than 0.4, a threshold 

commonly used in the literature to retain items (Stevens, 2002), and all have more than 50% unique 

variance (i.e. variance that is not explained by the remaining clocks).  

The distributions of the three MEGA clocks, together with the four original clocks and 

chronological age, are displayed in Figure 2. Descriptive statistics for the same variables can be 

found in Table 2. Child age in the estimation sample ranges from 14.6 to 19.3, following a bimodal 

distribution around ages 15 and 17 – the timing of the two clinical assessments collecting DNAm 

data in ALSPAC. The four traditional clocks are on average more dispersed and less centered 

around chronological age as compared to the MEGA clocks. When looking at their performance 

 
12 The selection of only one factor is unambiguous, as the second-largest factor has eigenvalue equal to 0.10. 
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in predicting chronological age in Figure A2, the Hannum and Horvath clock appear to be the most 

accurate, with the linear fit following closely the 45-degree line. GrimAge displays the largest shift 

in the intercept (GrimAge estimates of epigenetic age are on average 17.4 years higher than 

chronological age), but its level of dispersion is the smallest and its slope is the second-closest to 

one after Horvath. When looking at the predictive performance of the MEGA clocks against 

chronological age in Figure A3, all three methods exhibit a lower degree of dispersion as compared 

to the standard clocks and have slopes that are very close to 1. Consistently, MEGASEM and 

MEGAFA display the highest correlation with age in our sample, closely followed by GrimAge and 

MEGAWGT (Figure A4). All in all, the MEGA clocks appear to be better predictors of chronological 

age than the traditional clocks. 

5.2. Application 1: The Consequences of Child Abuse for Biological Aging 

5.2.1. Estimating Equation 

Next, we test the associations between measures of child abuse over time and the MEGA clocks 

defined, respectively, in sections 3.1 and 3.2. We do so by estimating the following linear 

regression model: 

𝑀𝐸𝐺𝐴𝑖,𝑡 = 𝛽0 + 𝛽1𝐴𝑏𝑢𝑠𝑒𝑖,𝑡 + 𝛽2𝐴𝑏𝑢𝑠𝑒𝑖,𝑡−1 + 𝛾𝑋𝑖 + 𝜀𝑖,𝑡 (6) 

Where 𝑀𝐸𝐺𝐴𝑖,𝑡 is one of the MEGA clocks for child i measured in period t, corresponding to late 

adolescence. 𝐴𝑏𝑢𝑠𝑒𝑖,𝑡 is a binary measure of exposure to child cruelty or child sexual abuse 

between child ages 11 and 18, as reported by either the mother, the mother’s partner or the child 

herself. 𝐴𝑏𝑢𝑠𝑒𝑖,𝑡−1 is defined similarly for the time period going from the child’s birth to age 10. 

Last, 𝑋𝑖 is a vector of individual controls. Importantly, 𝑋𝑖 includes the child’s age at the time of 

the DNAm assessment used to build the MEGA clocks, meaning that we can interpret the outcome 

as a measure of age acceleration. All other controls are measured around the time of the child’s 

birth. They include the mother’s age at birth of the study child and binary indicators for mother’s 

education, father’s social class, and the child’s gender, birth year, and birth order.  

From the literature on the epigenetic effects of childhood adverse life experiences, we expect 

coefficients 𝛽1 and 𝛽2 to be positive: experiencing child cruelty and sex abuse likely correlates 

with increased age acceleration. However, little is known on the longitudinal exposure to abuse 

over the course of childhood. It is thus unclear a priori whether recent abuse will be more strongly 



17 
 

associated with age acceleration in late adolescence (𝛽1 < 𝛽2) or if early childhood adversity will 

exhibit a stronger, long-lasting scarring effect (𝛽1 > 𝛽2). 

The identification assumptions to interpret 𝛽1 and 𝛽2 as causal effects would be rather strong, that 

is an absence of correlation between child abuse and the error term. While we do control for a wide 

set of individual and family control in 𝑋𝑖, there are likely other unobserved confounders that we 

are unable to control for. Estimates of 𝛽1 and 𝛽2 should thus be interpreted as conditional 

correlations, rather than causal effects. 

5.2.2. Results 

Table 3 reports the OLS estimates of the coefficients in Equation (3). Different versions of the 

MEGA clock are used across columns: MEGASEM in column 1, MEGAFA in column 2 and 

MEGAWGT in column 3. From the table, results appear to be very similar across the different 

versions of the clock, indicating that experiencing any form of child abuse (sexual or cruelty) 

between ages 0 and 10 is associated with over half a year of accelerated epigenetic age. Abuse 

experienced after age 11 does not appear to be significantly associated with age acceleration – the 

coefficient being mostly negative and small in magnitude. The negative sign here is due to the 

strong intertemporal correlation of our measure of abuse. When we include only one of the two 

indicators for child abuse in the regression, the coefficients are always positive (albeit only 

significant for the 0-10 age range).  

The half-a-year acceleration in epigenetic aging is comparable in magnitude to about half of the 

epigenetic-age premium for being a girl. Our effect size is within the estimated range of other 

studies that have looked at the association between early life adversity and age acceleration: Marini 

et al. (2020) estimate 1 to 2 months of accelerated aging at age 7 for ALSPAC children exposed 

to sexual and physical abuse, a number that our estimates suggest might compound over time. This 

compounding effect is consistent with the effect sizes found Lawn et al. (2018), who show that 

childhood exposure to sexual and physical abuse correlates with 2.7 to 3.4 higher epigenetic age 

as adults (29 to 47 years old). 

As indicated in Table 4, when disaggregating child abuse into child cruelty and sex abuse, only 

child cruelty between ages 0 and 10 attracts a statistically significant estimate at the 5% level. The 

positive coefficient is similar in size to those displayed in Table 3, amounting to about half a year 
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greater age acceleration for children exposed to child cruelty by age 11. Estimated coefficients for 

sex abuse are positive for both periods, albeit statistically insignificant at conventional thresholds. 

Results from Table 3 appear thus to be driven by child cruelty more than sex abuse. However, as 

child cruelty constitutes the largest fraction of the overall abuse measure (as summarized in Table 

1), we cannot exclude that we are underpowered to estimate a statistically significant coefficient 

for sex abuse – which only 3.6% of the sample reports having experienced between ages 0 and 10. 

5.3. Application 2: Biological Aging and Human Capital 

5.3.1. Estimating Equation 

Our second empirical application deals with estimating the association between accelerated 

epigenetic aging in late adolescence and early-adulthood cognitive and non-cognitive outcomes. 

We do so in a similar fashion as equation (1), using the following linear regression model: 

𝑌𝑡+1 = 𝛿0 + 𝛿1𝑀𝐸𝐺𝐴𝑖,𝑡 + 𝛿2𝐻𝑒𝑎𝑙𝑡ℎ𝑖,𝑡 + 𝜃𝑋𝑖 + 𝜀𝑖,𝑡 (7) 

Where 𝑌𝑡+1 is one of the four outcomes measured in early adulthood (period t+1). All outcomes 

are binary and indicate negative outcomes, measured as far in time as possible within the ALSPAC 

data handout. Here, we consider two outcomes that are linked to the cognitive sphere, namely not 

having attained a university degree by age 26 and being neither in employment, education or 

training (NEET) at age 25. The remaining two outcomes relate more to the non-cognitive sphere 

and mental health: the first is based on being above the diagnostic threshold of the self-assessed 

Short Moods and Feelings Questionnaire (SMFQ) at age 25 (Angold et al., 1995), a widely used 

psychometric scale of mental health used as a screening tool for depressive symptoms; the second 

is having been diagnosed with depression by age 22.  𝑀𝐸𝐺𝐴𝑖,𝑡 is again one of the MEGA clocks 

for child i measured in period t, namely late adolescence. 𝑋𝑖 is the same vector of controls defined 

above, while 𝐻𝑒𝑎𝑙𝑡ℎ𝑖,𝑡 is a vector of individual health and behavioral outcomes measured at age 

15: BMI, being a smoker and drinking. 

Similar to Application 1, here too we can only interpret 𝛿1 as a conditional association rather than 

the causal effect of one extra year of epigenetic age acceleration on early-adulthood outcomes. In 

an augmented version of equation (7), we additionally control for factors for cognitive and non-

cognitive skills, measured at the same time as the MEGA clock and computed in a similar way, 

based on age-16 cognitive and non-cognitive assessments. The cognitive skills factor is based on 
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Mathematics, English, Science and aggregate test-scores, from linked administrative data on 

GCSE (or equivalent) exams. The non-cognitive skills factor, on the other hand, is based on child 

self-reported SMFQ and on four subscales of the mother-reported Strengths and Difficulties 

Questionnaire (SDQ; Goodman et al., 2000).13 

5.3.2. Results 

Results from equation (7) are illustrated in Figure 3. The figure shows that one extra year of 

epigenetic age acceleration is associated with a 3 percentage points (pp) increase in the probability 

of not having a university degree by age 26, a 1 pp increase in the probability of being NEET at 

25, a 1.2 pp increase in the probability of being above the diagnostic SMFQ threshold at age 25 

and between a 1 and a 2 pp increase in the probability of being diagnosed with depression by age 

22. These effect sizes range from 8 to 16 percent of the mean value of the outcomes, providing 

evidence that a moderate worsening of economic and mental-health outcomes can be observed 

already in early adulthood for those with higher age acceleration in childhood. Results on 

educational attainment are consistent with Mareckova et al. (2023), who find evidence of a small 

negative association between Horvath age acceleration and IQ in a sample of young adult women.  

Tables 5 and 6 show that age acceleration holds a predictive power over these outcomes that goes 

above and beyond the association between negative health outcomes or risky behaviors in 

adolescence and adult outcomes. The tables show estimates for coefficients 𝛿1 and 𝛿2 from 

Equation (7), both in a simplified version that does not control for adolescent health (columns 1, 

3, and 5) and for the full model specification (columns 2, 4, and 6). Results from the tables reveal 

that the coefficients attached to the MEGA clocks are robust to the introduction of the Health 

control vector, suggesting that the association between epigenetic age acceleration and early-

adulthood outcomes is not confounded by these other observables health outcomes.  

In order to benchmark the effect sizes of the associations between the MEGA clocks and early-

adulthood outcomes, we additionally include two additional latent factors to the measurement 

equation, measuring cognitive and non-cognitive skills respectively. Results are shown in Figure 

 
13 The SDQ is a 25-items questionnaire developed by psychologists that is used as a screening tool for socio-emotional 

and behavioral problems in children and adolescents. The four subscales we use here, each measured on a 0-10 discrete 

scale, are those that make up the composite ‘total SDQ’ score: emotional symptoms, hyperactivity/inattention, peer 

relationship problems, and conduct problems. Higher values correspond to greater problems in each of the areas 

indicated by the subscale title. 
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A5, where the MEGA clock weakly, but consistently predicts worse early-adulthood outcomes, 

consistent with Figure 3.14 On the contrary, the cognitive and non-cognitive factors, built similar 

to the MEGA clocks as either latent factors from SEM, factor analysis or covariance weighting, 

predict better early-adulthood outcomes. The relationships are, as expected, stronger between 

cognitive skills and educational attainment and between non-cognitive skills and mental health 

outcomes. While these effect sizes are on average larger in magnitude than those attached to the 

MEGA clocks, the latter remain in the ballpark of the point estimates linked to non-cognitive skills 

– suggesting that these modest (and somewhat imprecise) effect sizes might actually be 

economically relevant.  

5.4. Sensitivity tests 

We first test whether the results from Table 3 are similar when using traditional clocks instead of 

the MEGA clock as dependent variables in Equation (6). Figure 4 reports estimates of coefficients 

𝛽1 and 𝛽2 for each of the outcomes indicated in the legend. First, we show results for each of the 

single clocks used to build the MEGA clock (blue round markers) and, second, we report the 

coefficients from Table 3 for convenience (red diamond markers). Estimates of child abuse before 

age 11 using the traditional clocks display on average larger magnitudes than those estimated with 

the MEGA clocks, with point estimates ranging from 0.52 to 1.00. The MEGA clocks produce 

results that are the closest to the GrimAge clock (the one they correlate with the most, as shown in 

Figure A4), but have smaller standard errors on average, suggesting that – all else equal – our 

aggregating procedures do indeed reduce measurement error as compared to using any one of the 

single clocks separately. In Figure A6, we replicate the same exercise but disaggregating child 

abuse into its two components: cruelty and sex abuse (similar to Table 3). Results are again 

consistent with those from Figure 4, with the MEGA clocks displaying on average smaller 

confidence intervals than the traditional clocks and point estimates aligned with the GrimAge 

clock. 

Due to the ease of interpretation of the dependent variable in its natural scale (years of age), we 

have so far left clocks in their natural scale. However, for a subset of the MEGA clock procedures, 

this implied a manual de-standardization. Due to standardization entering the procedures at 

 
14 The MEGA clocks and the cognitive and non-cognitive factors are standardized in the figure, to enhance 

comparability. 
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different moments (see Appendix B for more details), the variance captured by the standardized 

MEGA clocks slightly differs from that of the unstandardized ones. In order to test whether our 

results depend on the choice of scale of the dependent variables, in Tables A4 and A5 respectively 

we replicate Tables 3 and 4 with dependent variables standardized to have mean zero and standard 

deviation one. Standardized results are robust across specifications and clocks. Specifically, results 

in Table A4 indicate that the half-a-year age acceleration penalty associated with child abuse 

before age 11 can be alternatively read as a 22 to 25% of a standard deviation increase in age 

acceleration. 

In addition, in order to test whether results are sensitive to the exclusion of either one clock used 

in the MEGA algorithms, we compute leave-one-out versions of the MEGA clocks. Exploratory 

factor analysis confirms a uni-factor model for any combination of three out of the four clocks. 

Results for the first empirical application, displayed in Figure A7, are robust to the exclusion of 

either one clock. As expected, this comes at the expenses of precision, the loss of which is greater 

when excluding the GrimAge clock. All point estimates for early-childhood abuse are remarkably 

stable and they remain positive and statistically different from zero at least at the 10% level. 

Similarly, Figure A8 applies this leave-one-out computational strategy to the second empirical 

exercise. Here too the point estimates from even-numbered columns of Tables 5 and 6 remain quite 

robust when excluding either one of the Hannum, Horvath or PhenoAge clocks. Interestingly, point 

estimates converge to zero when excluding the GrimAge clock from the MEGA, indicating that 

most of the associations between epigenetic age acceleration and early-adulthood outcomes that 

we observe run through this clock.  

We then turn to our definition of the exposure of interest in our first empirical application, child 

abuse. As argued in section 4.1, our preferred measure of abuse includes information from all 

available raters, namely mothers, their partners and the child herself. Table A6 shows that our 

results in Table 3 are not driven by this measurement choice: the coefficients attached to abuse 

between ages 0 and 10 are stable across raters and combination of raters, roughly ranging from 0.3 

to 0.5. The use of reports from all raters (last column of Table A6) comes with the lowest standard 

errors across all methods, suggesting that harnessing these different sources of information can 

help reducing the measurement error linked to the under-reporting of sensitive constructs. 
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6. Mechanisms 

Why do children who experience abuse in childhood age faster? One possible biological 

mechanism involves changes in the structure of blood cells such as leukocytes, which are 

predicting of epigenetic aging (Lima et al., 2022). Different blood cell types have distinct 

methylation profiles, which is a reason why blood cell counts are typically partialled out in 

epigenetic studies. However, it can be argued that these counts are ‘bad controls’ (Angrist and 

Pischke, 2009), as they may mediate the relationship between environmental exposures and the 

epigenome. Child abuse, in particular, has been consistently linked to changes in immune cell 

proportions, driven by increased inflammatory activity (D’Elia et al., 2018; Renna et al., 2021).  

To test whether cell counts mediate the relationship between child abuse and epigenetic aging in 

our sample, we compute standard blood cell counts for peripheral blood samples from the age 15-

19 DNAm data in ALSPAC,15 using the Houseman et al. (2012) method. In our estimation sample, 

children exposed to abuse at least once display substantially larger associations between blood cell 

counts and age acceleration (Figure A9). When controlling for blood cell counts in our main 

regressions, the magnitude of the estimated coefficients decreases by approximately one-third 

(Table A7). While none of the estimates in Table A7 are significantly different from their 

counterparts in Table 3, this result is suggestive of the fact that blood cell counts may play a 

mediating role in the association between childhood abuse and age acceleration. 

Due to the limited availability of other biological biomarkers in our sample, directly assessing the 

presence of other biological channels is challenging. Nevertheless, we can draw from literature in 

molecular epigenetics to highlight plausible mechanisms that explain the associations we find 

between epigenetic aging, childhood exposures and early-adulthood outcomes.  

Related to our first empirical application, differences in how people respond to stress and the 

symptoms they experience can shape the epigenetic response to traumatic childhood experiences. 

Biological and behavioral mechanisms are both likely to be in place. Beyond the changes in cell 

proportions discussed above, stress response is linked to the functioning of the hypothalamic-

pituitary-adrenal axis and cortisol production, which are in turn associated with higher epigenetic 

aging (Dammering et al., 2021; Suarez et al., 2018). Psychological resilience can additionally 

 
15 The cell types considered here are B-lymphocytes (Bcell), CD4+ T-lymphocytes (CD4T), CD8+ T-lymphocytes 

(CD8T), granulocytes (Gran), monocytes (Mono), and natural killer (NK). 
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moderate stress-related health impacts; individuals with stronger emotion regulation and self-

control tend to be better protected from stress-induced epigenetic aging (Harvanek et al., 2021; 

Harvanek et al., 2023). Research on posttraumatic stress disorder (PTSD) suggests that specific 

symptom groups, such as emotional withdrawal, sleep problems, and cognitive dysfunction, are 

more closely tied to changes in epigenetic aging than overall PTSD severity (Katrinli et al., 2020; 

Na et al., 2022). In addition, risky behaviors and lifestyle changes can also play a role in how stress 

affects epigenetic aging (Schmitz et al., 2022; Jung et al., 2023). Biological and behavioral stress 

responses have been hypothesized to affect other hallmarks of aging, such as circadian rhythms, 

immune system functioning and nutrition, which in turn imprint onto the epigenome (Harvanek et 

al., 2023).  

Linked to our second empirical application, we review the literature to investigate the biological 

rationale through which more accelerated epigenetic aging predicts worse cognitive and non-

cognitive outcomes in adulthood. The machine learning approaches used to develop epigenetic 

clocks are fundamentally agnostic to the underlying biology, so the biological gene functions and 

processes (biological annotation) reflects multiple, interconnected mechanisms rather than a single 

one. The biological annotation of the CpG sites used in the Horvath, Hannum, PhenoAge and 

GrimAge clocks have been shown to regulate biological processes such as cell death and survival 

(Horvath, 2013), cellular growth and proliferation (Horvath, 2013; Hannum et al., 2013), 

locomotion (Hannum et al., 2013), inflammation (Levine et al., 2018), antiviral response (Levine 

et al., 2018) and DNA damage recognition and repair (Levine et al., 2018). These CpGs are over-

represented in gene sets involved in the immune system, lipid function and adipocytes 

communication (Lu et al., 2019).  

Although these aging traits may not have been clinically present yet in the young adults from the 

ALSPAC sample, the underlying biological processes could already be detectable and correlate 

with early signs of cognitive decline (Felt et al., 2023). While DNAm has been shown to contribute 

to learning processes and memory, through the regulation of the central nervous system, there is 

scarce evidence on the link between epigenetic clocks and the biological processes involved in 

cognitive and non-cognitive skills maintenance and production. One example is the work of Han 

et al. (2018), who find that three out of ten most involved gene regions regulate neuronal pathways 

(e.g. neurogenesis, neuron differentiation, neuron death).  
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7. Conclusion 

This study illustrates the potential of epigenetic clocks as valuable tools in economic research for 

understanding the biological underpinnings of socioeconomic influences on health and behavior. 

We developed the Multi EpiGenetic Age (MEGA) clock, a novel metric that combines four 

established epigenetic clocks to improve the accuracy and reliability of epigenetic age 

measurements. Our empirical applications using data from a cohort of children in the UK reveal 

important findings: first, early-life exposure to child abuse is associated with accelerated 

epigenetic aging in adolescence, highlighting the long-term biological impact of early-life 

adversity; second, accelerated epigenetic aging in adolescence predicts worse cognitive and non-

cognitive outcomes in early adulthood, suggesting broader implications for health and 

productivity. 

These findings emphasize the importance of considering biological measures alongside traditional 

socioeconomic indicators in economic research. The MEGA clock offers an easily interpretable 

and reliable tool for understanding how environmental factors shape biological aging processes, 

providing a pathway to more targeted and effective policy interventions. Future research should 

continue to refine these measures and explore their applications across diverse populations and 

contexts. By bridging the gap between biology and economics, our work contributes to a more 

comprehensive understanding of human development and the intricate interplay between nature 

and nurture. 
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Figures and Tables 

 

Figure 1: Cross-rater, intertemporal correlations of child cruelty and sex abuse 

 

Notes: the correlation matrix is based on the sample of 3937 children in ALSPAC for whom all measures above are 

available. 
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Figure 2: Distribution of epigenetic age by clock and chronological age 
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Figure 3: Age acceleration and early-adulthood outcomes 

 

Notes: The figure displays point estimates for the MEGA clocks from columns (2), (4), and (6) of Tables 5 and 6. All 

regressions control for mother’s age at birth of the study child and binary indicators for mother’s education, father’s 

social class, and the child’s gender, birth year, and birth order. Health outcomes (BMI, smoking and drinking) are 

additionally controlled for. Spikes are for 90% confidence intervals.  
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Figure 4: Child abuse and age acceleration across traditional clocks and MEGA clocks 

 

Notes: The figure replicates results from Table 2 using the single clocks as dependent variables instead of the MEGA 

clock. All regressions control for mother’s age at birth of the study child and binary indicators for mother’s education, 

father’s social class, and the child’s gender, birth year, and birth order. Spikes are for 90% confidence intervals.  
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Table 1: Prevalence of abuse in the estimation sample 

 M P C MP CM CP CMP 

 (1) (2) (3) (4) (5) (6) (7) 

Age 0-10        

   Child cruelty  13.8% 2.0% 23.0% 15.3% 33.3% 23.9% 33.7% 

        

   Sex abuse   3.6%     

        

   Any child abuse 15.5% 5.6% 24.6% 17.9% 34.4% 25.4% 34.8% 

        

Age 11-18        

   Child cruelty  4.7% 0.4% 12.1% 4.9% 15.6% 12.5% 15.8% 

        

   Sex abuse   5.4%     

        

   Any child abuse 9.4% 5.8% 16.5% 9.6% 19.4% 17.0% 19.6% 
Notes: The table reports the prevalence of abuse in the estimation sample of 448 observations. Letters in the column 

headers indicate the person who reported the measure of abuse: ‘M’ is for mothers, ‘P’ is for the mother’s partner, and 

‘C’ is for the child. 

 

 

Table 2: Descriptive statistics of chronological age and epigenetic age 

 Mean Std. Dev. Min Max 

Chronological age 17.23 0.95 14.6 19.3 

Traditional clocks     

   Horvath 19.97 4.95 4.2 35.8 

   Hannum 20.62 5.03 4.6 40.3 

   PhenoAge 11.29 6.15 -8.7 34.7 

   GrimAge 34.64 2.67 26.3 42.0 

MEGA clocks     

   MEGASEM (GrimAge) 21.40 1.90 14.5 26.4 

   MEGASEM (Horvath) 16.45 1.46 11.1 20.3 

   MEGASEM (Hannum) 33.27 2.95 22.5 41.1 

   MEGASEM (PhenoAge) 34.54 3.07 23.3 42.7 

   MEGAFA 33.78 2.55 26.3 40.8 

   MEGAWGT 33.19 2.50 26.6 40.6 
Notes: Descriptive statistics refer to the estimation sample of 448 observations. 
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Table 3: Child abuse and age acceleration from the MEGA clock 

 SEM FA Weighted index 

 (1) (2) (3) 

    

Any child abuse (0-10) 0.539** 0.536** 0.549** 

 (0.251) (0.255) (0.252) 

    

Any child abuse (11-18) -0.007 -0.134 -0.143 

 (0.291) (0.296) (0.292) 

    

Observations 448 448 448 

Adjusted R-squared . 0.272 0.264 
Notes: Standard errors in parentheses. All regressions control for mother’s age at birth of the study child and binary 

indicators for mother’s education, father’s social class, and the child’s gender, birth year, and birth order. * p < 0.1, ** 

p < 0.05, *** p < 0.01 

 

 

 

 

Table 4: Child abuse and age acceleration from the MEGA clock: disaggregation 

 SEM FA Weighted index 

 (1) (2) (3) 

    

Any child cruelty (0-10) 0.546** 0.543** 0.559** 

 (0.254) (0.259) (0.255) 

    

Any sex abuse (0-10) 0.253 0.270 0.267 

 (0.568) (0.580) (0.572) 

    

Any child cruelty (11-18) -0.054 -0.228 -0.214 

 (0.314) (0.319) (0.315) 

    

Any sex abuse (11-18) 0.281 0.377 0.358 

 (0.468) (0.477) (0.471) 

    

Observations 448 448 448 

Adjusted R-squared . 0.272 0.263 
Notes: Standard errors in parentheses. All regressions control for mother’s age at birth of the study child and binary 

indicators for mother’s education, father’s social class, and the child’s gender, birth year, and birth order. * p < 0.1, ** 

p < 0.05, *** p < 0.01 
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Table 5: Age acceleration and early-adulthood cognitive outcomes 

 SEM  FA  Weighted Index 

 (1) (2)  (3) (4)  (5) (6) 

Panel A. No University degree by 26       

MEGA 0.028** 0.027**  0.027*** 0.025***  0.026*** 0.027*** 

 (0.012) (0.012)  (0.009) (0.009)  (0.009) (0.009) 

         

BMI at age 15  -0.006   -0.006   -0.006 

  (0.007)   (0.007)   (0.007) 

         

Smoking at age 15  0.283***   0.286***   0.321*** 

  (0.083)   (0.086)   (0.088) 

         

Drinking at age 15  -0.025   -0.026   -0.028 

  (0.041)   (0.042)   (0.042) 

         

Observations 393 393  393 393  393 393 

Adjusted R-squared    0.128 0.148  0.126 0.145 

         

Panel B. NEET at 25       

MEGA 0.011 0.009  0.010* 0.009  0.010* 0.010* 

 (0.008) (0.008)  (0.006) (0.006)  (0.006) (0.006) 

         

BMI at age 15  0.005   0.006   0.006 

  (0.005)   (0.004)   (0.004) 

         

Smoking at age 15  0.043   -0.005   -0.006 

  (0.052)   (0.054)   (0.054) 

         

Drinking at age 15  -0.036   -0.032   -0.033 

  (0.027)   (0.027)   (0.027) 

         

Observations 448 448  448 448  448 448 

Adjusted R-squared    -0.004 0.025  -0.004 0.026 
Notes: Standard errors in parentheses. All regressions control for mother’s age at birth of the study child and binary 

indicators for mother’s education, father’s social class, and the child’s gender, birth year, and birth order. * p < 0.1, ** 

p < 0.05, *** p < 0.01. 
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Table 6: Age acceleration and early-adulthood non-cognitive outcomes 

 SEM  FA  Weighted Index 

 (1) (2)  (3) (4)  (5) (6) 

Panel A. Problematic SMFQ at 25       

MEGA 0.011 0.012  0.011* 0.012*  0.012* 0.012* 

 (0.009) (0.009)  (0.007) (0.007)  (0.007) (0.007) 

         

BMI at age 15  -0.004   -0.004   -0.004 

  (0.005)   (0.005)   (0.005) 

         

Smoking at age 15  0.005   0.014   0.013 

  (0.068)   (0.073)   (0.073) 

         

Drinking at age 15  -0.016   -0.016   -0.017 

  (0.031)   (0.032)   (0.032) 

         

Observations 338 338  338 338  338 338 

Adjusted R-squared    0.014 0.002  0.015 0.003 

         

Panel B. Diagnosed with depression by 22     

MEGA 0.011 0.009  0.017* 0.016*  0.017* 0.017* 

 (0.013) (0.013)  (0.009) (0.009)  (0.009) (0.009) 

         

BMI at age 15  0.006   0.006   0.006 

  (0.007)   (0.007)   (0.007) 

         

Smoking at age 15  0.062   0.021   0.020 

  (0.082)   (0.085)   (0.085) 

         

Drinking at age 15  0.037   0.041   0.040 

  (0.042)   (0.042)   (0.042) 

         

Observations 445 445  445 445  445 445 

Adjusted R-squared    0.001 0.008  0.001 0.008 
Notes: Standard errors in parentheses. All regressions control for mother’s age at birth of the study child and binary 

indicators for mother’s education, father’s social class, and the child’s gender, birth year, and birth order. * p < 0.1, ** 

p < 0.05, *** p < 0.01. 
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Appendix A: Supplementary Figures and Tables 

 

Figure A1: Cross-rater, intertemporal correlations of child cruelty and sex abuse 

 

Notes: The graph replicates Figure 1 in the estimation sample of 448 participants. Mother reported physical cruelty is 

blank as there are no cases of mother-reported physical cruelty between child ages 11 and 18 in the estimation sample. 
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Figure A2: Chronological age and epigenetic age in four epigenetic clocks 

 

Notes: N=448. 
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Figure A3: Chronological age and epigenetic age in the MEGA clocks 

 

Notes: N=448. 
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Figure A4: Correlation coefficients across clocks 

 

Notes: N=448. 
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Figure A5: Age acceleration, cognitive and non-cognitive skills, and early-adulthood outcomes 

 

Notes: The figure replicates results the odd-numbered columns from Tables 5 and 6, additionally controlling for a 

cognitive and a non-cognitive skills factor. All regressions control for mother’s age at birth of the study child and 

binary indicators for mother’s education, father’s social class, and the child’s gender, birth year, and birth order. Spikes 

are for 90% confidence intervals. 
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Figure A6: Child abuse and age acceleration from four different clocks: disaggregation 

 

Notes: The figure replicates results from Table 4 using the single clocks as dependent variables instead of the MEGA 

clock. All regressions control for mother’s age at birth of the study child and binary indicators for mother’s education, 

father’s social class, and the child’s gender, birth year, and birth order. Spikes are for 90% confidence intervals. 
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Figure A7: Child abuse and age acceleration: leave-one-out MEGA 

 

Notes: The figure replicates results from Table 3 using the single clocks as dependent variables instead of the MEGA 

clock. All regressions control for mother’s age at birth of the study child and binary indicators for mother’s education, 

father’s social class, and the child’s gender, birth year, and birth order. Spikes are for 90% confidence intervals. 
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Figure A8: Age acceleration and early-adulthood outcomes: leave-one-out MEGA 

 

Notes: The figure replicates results from even-numbered columns in Tables 5 and 6 using leave-one-out versions of 

the MEGA clock. All regressions control for mother’s age at birth of the study child and binary indicators for mother’s 

education, father’s social class, and the child’s gender, birth year, and birth order. Spikes are for 90% confidence 

intervals. 
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Figure A9: Age acceleration and blood cell counts by exposure 

 

Notes: The figure plots associations between blood cell counts and the MEGA clocks in the estimation sample, from 

a linear regression model where the only control is age. Spikes are for 90% confidence intervals.  
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Table A1: Self-reported measures of child abuse in ALSPAC (age 22+) 

Variable label Dichotomization 

Frequency adult in family pushed, grabbed or shoved respondent  Happened at least 

‘sometimes’ 

Frequency adult in family smacked respondent for discipline Happened at least 

‘sometimes’ 

Frequency adult in family punished respondent in a way that seemed 

cruel 

Happened at least 

‘sometimes’ 

Frequency adult in family threatened to kick, punch, hit respondent 

with something that could hurt respondent or physically attack 

respondent in another way 

Happened at least 

‘sometimes’ 

Frequency adult in family actually kicked, punched, hit respondent 

with something that could hurt respondent or physically attacked 

respondent in another way 

Happened at least 

‘rarely’ 

 

Frequency adult in family hit respondent so hard it left bruises or marks Happened at least 

‘rarely’ 

Respondent was touched in a sexual way by adult or older child, or was 

forced to touch adult or older child in a sexual way 

Happened at least 

once 

Adult or older child forced, or attempted to force, respondent into any 

sexual activity by threatening or holding respondent down or hurting 

respondent in some way 

Happened at least 

once 
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Table A2: Selection on observables of the estimation sample 

 Full sample Estimation 

sample 

Difference (1)-(2) 

 (1) (2) (3) 

Female 0.489  0.618   -0.129*** 

 [0.500]  [0.486]   (0.024) 

 14997 448  

Age 17.123  17.228   -0.105 

 [1.042]  [0.951]   (0.058) 

 925 448  

Born in 1992 0.563  0.685   -0.122*** 

 [0.496]  [0.465]   (0.024) 

 15468 448  

First-born 0.440  0.500   -0.060* 

 [0.496]  [0.501]   (0.024) 

 13320 448  

Mother’s age at birth 27.989  29.946   -1.957*** 

 [4.969]  [4.307]   (0.238) 

 14023 448  

Mother’s education (ref: Lower-secondary)  

  Upper-secondary 0.182  0.292   -0.111*** 

 [0.386]  [0.455]   (0.019) 

 15612 448  

  Post-secondary 0.104  0.277   -0.173*** 

 [0.305]  [0.448]   (0.015) 

 15612 448  

Father’s social class (ref.: Professionals)  

  Non-manual 0.316  0.482   -0.166*** 

 [0.465]  [0.500]   (0.022) 

 15584 448  

  Manual 0.311  0.259   0.052* 

 [0.463]  [0.439]   (0.022) 

 15584 448  
Notes: The table plots means of covariates and their differences across the estimation sample and the largest ALSPAC 

sample in which each covariate is available. Standard deviations in brackets and standard errors in parentheses. Sample 

sizes are indicated in italics below standard deviations. * p < 0.1, ** p < 0.05, *** p < 0.01 

 

Table A3: Factor analysis results for MEGAFA 

 Factor loadings Uniqueness 

   Horvath 0.410 0.832 

   Hannum 0.662 0.562 

   PhenoAge 0.633 0.599 

   GrimAge 0.639 0.592 
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Table A4: Child abuse and age acceleration from the MEGA clock (standardized results) 

 SEM FA Weighted index 

 (1) (2) (3) 

    

Any child abuse (0-10) 0.252** 0.221** 0.232** 

 (0.124) (0.106) (0.107) 

    

Any child abuse (11-18) -0.003 0.021 0.010 

 (0.136) (0.123) (0.124) 

    

Observations 448 448 448 

Adjusted R-squared . 0.182 0.171 
Notes: Standard errors in parentheses. All regressions control for mother’s age at birth of the study child and binary 

indicators for mother’s education, father’s social class, and the child’s gender, birth year, and birth order. * p < 0.1, ** 

p < 0.05, *** p < 0.01 

 

 

Table A5: Child abuse and age acceleration from the MEGA clock: disaggregation 

(standardized results) 

 SEM FA Weighted index 

 (1) (2) (3) 

    

Any child cruelty (0-10) 0.255** 0.228** 0.240** 

 (0.126) (0.108) (0.109) 

    

Any sex abuse (0-10) 0.118 0.090 0.092 

 (0.265) (0.242) (0.243) 

    

Any child cruelty (11-18) -0.025 0.012 0.010 

 (0.146) (0.133) (0.134) 

    

Any sex abuse (11-18) 0.131 0.097 0.094 

 (0.219) (0.199) (0.200) 

    

Observations 448 448 448 

Adjusted R-squared . 0.181 0.170 
Notes: Standard errors in parentheses. All regressions control for mother’s age at birth of the study child and binary 

indicators for mother’s education, father’s social class, and the child’s gender, birth year, and birth order. * p < 0.1, ** 

p < 0.05, *** p < 0.01 
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Table A6: Child abuse and age acceleration from the MEGA clock: sensitivity to the rater of abuse 

 M P C MP CM CP CMP 

 (1) (2) (3) (4) (5) (6) (7) 

A. SEM        

Any abuse (0-10) . 0.528 0.488* 0.294 0.489* 0.558** 0.539** 

 . (0.458) (0.277) (0.283) (0.251) (0.273) (0.251) 

        

Any abuse (11-18) . 0.447 -0.010 0.321 0.024 -0.007 -0.007 

 . (0.450) (0.315) (0.362) (0.292) (0.311) (0.291) 

        

Observations 448 448 448 448 448 448 448 

B. FA        

Any abuse (0-10) 0.408 0.400 0.308 0.427 0.470* 0.382 0.536** 

 (0.295) (0.466) (0.284) (0.286) (0.256) (0.280) (0.255) 

        

Any abuse (11-18) 0.367 0.482 -0.035 0.327 -0.084 -0.058 -0.134 

 (0.372) (0.457) (0.324) (0.367) (0.297) (0.320) (0.296) 

        

Observations 448 448 448 448 448 448 448 

Adjusted R-squared 0.174 0.177 0.181 0.176 0.181 0.186 0.184 

C. Weighted index        

Any abuse (0-10) 0.468 0.392 0.315 0.489* 0.480* 0.386 0.549** 

 (0.290) (0.460) (0.280) (0.282) (0.252) (0.277) (0.252) 

        

Any abuse (11-18) 0.348 0.443 -0.033 0.299 -0.086 -0.065 -0.143 

 (0.367) (0.451) (0.319) (0.362) (0.293) (0.316) (0.292) 

        

Observations 448 448 448 448 448 448 448 

Adjusted R-squared 0.263 0.259 0.258 0.264 0.262 0.259 0.264 
Notes: Standard errors in parentheses. The dependent variable is the MEGA clock age acceleration, computed with 

SEM in panel A, with FA in panel B and with the weighted index in panel C. Letters in the column headers indicate 

the person who reported the measure of child cruelty used in the definition of ‘Any abuse’: ‘M’ is for mothers, ‘P’ is 

for the mother’s partner, and ‘C’ is for the child. All regressions control for mother’s age at birth of the study child 

and binary indicators for mother’s education, father’s social class, and the child’s gender, birth year, and birth order. 
* p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table A7: Child abuse and age acceleration from the MEGA clock (controlling for cell type 

counts) 

 SEM FA Weighted index 

 (1) (2) (3) 

    

Any child abuse (0-10) . 0.305 0.340* 

 . (0.192) (0.203) 

    

Any child abuse (11-18) . -0.360 -0.355 

 . (0.222) (0.235) 

    

Observations . 448 448 

Adjusted R-squared . 0.595 0.525 
Notes: Standard errors in parentheses. All regressions control for mother’s age at birth of the study child and binary 

indicators for mother’s education, father’s social class, and the child’s gender, birth year, and birth order.* p < 0.1, ** 

p < 0.05, *** p < 0.01.  

 

 


