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Abstract 

Despite increasingly stringent regulations, there has been a concerning stagnation in 

reducing workplace fatalities recently. Can place-based targeting help? By coupling 

machine learning techniques with comprehensive data from Italy, we develop a place-

based approach to workplace fatalities. Harnessing accurate forecasts, we construct a 

granular risk map and compare it to the allocation of on-site inspections and public 

subsidies for occupational safety, uncovering limited overlap. Counterfactual estimates 

reveal that current measures are effective only in areas flagged as high-risk by ex-ante 

machine predictions. AI-powered territorial targeting can reduce the incidence of this 

chronic issue while lowering the costs of policy implementation. 
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1. Introduction 

Workplace fatalities, a primary target of occupational safety and health 

regulation, remain a significant problem worldwide, even in the most developed 

countries. According to the International Labour Organization (ILO), nearly three 

million people died in 2019 due to work-related accidents and diseases, 

representing an increase of more than 5% compared to 2015 (ILO, 2023). This 

lack of progress has made the issue a policy priority across many countries. The 

European Union (EU), for example, set out an ambitious Strategic Framework on 

Health and Safety at Work 2021-2027, based on the Vision Zero approach, which 

aims to eliminate work-related deaths entirely (EASHW, 2023). 

However, despite its relevance in political debates and continued 

prominence in the media, this issue has received limited attention from researchers 

in public policy and economics. Perhaps even more surprisingly—considering both 

the heterogeneity of occupational fatalities across jobs and sectors and the high 

degree of clustering and specialization of modern local economies—there is a 

notable lack of studies examining the issue from a territorial perspective. In this 

work, we develop a place-based approach to identify hotspot areas at the highest 

risk of workplace deaths in advance, pinpoint the main territorial predictors of 

this phenomenon, and target and support policy interventions aimed at enhancing 

occupational safety and health. 

The economic literature on these issues is relatively scarce and thus far has 

focused only on specific aspects and relationships. One body of work has 

investigated linkages with labor market characteristics, such as the relationship 

between worker sorting and the risk of on-the-job fatalities (DeLeire and Levy, 

2004); the impact of immigration on natives’ workplace conditions (Dillender and 

McInerney, 2020); the nexus between worker deaths and firms’ demand for 

incumbent workers and new hires (Jäger and Heining, 2022); and the unintended 

effects of temporary contracts and minimum wages on injury severity (Picchio 

and van Ours, 2017, Liu et al., 2024). Other studies have explored the role of 
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economic and market conditions, specifically examining the consequences of 

positive price shocks on workplace injury rates (Charles et al., 2022), the effects 

of import competition on workers’ health (Mcmanus and Schaur, 2016), and the 

relationship between recessions and workplace safety (Boone and van Ours, 2006). 

Other analyzed aspects include the role of safety regulations, such as the 

deterrence effects of publicizing violations of workplace safety (Johnson, 2020), 

the use of randomized safety inspections to estimate the value of a statistical life 

(Lee and Taylor, 2019), and the impact of environmental conditions on workplace 

accidents (Drescher and Janzen, 2025). Finally, more closely related to our paper, 

a recent study by Johnson et al. (2023) used micro-level establishment data on 

workplace injuries and combined randomization and causal forests to assess the 

impacts of inspections and evaluate alternative targeting strategies to random 

inspection allocation. They found that the use of data-driven allocation criteria 

for targeting inspections could have prevented as many as twice as many injuries 

and that targeting based on predicted injuries is more effective than targeting 

based on estimates of the treatment effects of inspections. 

None of these microeconomic studies adopt a territorial approach to 

explore occupational safety and health outcomes. However, given the spatial 

heterogeneity of modern local labor markets, in terms of the composition of jobs, 

workers, sectors, etc., geographic patterns and territorial data may hold intrinsic 

predictive power and provide valuable insights concerning these phenomena. 

Similarly, the ex-post, retrospective setting of all these studies—with the only 

exception of Johnson et al. (2023)—is not particularly informative about whom 

to treat and the related development and deployment of preventive and deterrent 

measures, but only about the effects, or lack thereof, of the realized policies. 

We take a different route and develop a prospective approach to study 

workers’ health and safety through an urban and public economics lens, which 

complements these micro-level studies by exploring the problems of vulnerability 

detection and public resources allocation from an ex-ante and place-based, rather 
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than ex-post and firm-based, perspective.1 To this end, we combine state-of-the-

art machine learning (ML) methods with granular territorial data to predict and 

target areas most at risk of workplace fatalities. 

Our exclusive focus on deaths—rather than injuries—as the outcome 

variable to study occupational safety and health is uncommon2 and particularly 

noteworthy, as nonfatal work accidents are generally subject to vast and hard-to-

detect underreporting issues, especially in contexts characterized by sizable 

shadow economies where the incentive not to report is particularly strong 

(OECD/ILO, 2019). Mismeasurement in outcome data is always a threat in 

predictive problems, as it can lead ML to automate, reproduce, and even amplify 

errors in the recording of imperfect data (Mullainathan & Obermeyer, 2017). On 

the other hand, underreporting bias is likely minimal for deaths, given the 

considerable challenges associated with not reporting fatalities. This implies that 

our analysis relies on more accurate data than most previous studies focused on 

non-fatal injuries, thereby minimizing the challenges associated with predictive 

tasks based on inaccurate training outcome data (Cannings et al., 2020).  

Using detailed workplace fatality data from Italian local labor markets 

(LLMs) for the period of 2017-2023, the ML algorithms reveal significant spatial 

heterogeneity in the risk of fatalities on the job and accurately forecast the local 

number of workers’ deaths in the held-out years. We leverage these accurate 

machine predictions to construct a granular risk map, which can inform place-

based policy interventions aimed at enhancing occupational safety and health. By 

comparing the ML risk map with the actual distribution of public policies, we 

demonstrate that the allocation of on-site inspections and public subsidies for 

occupational safety is currently not more prevalent where it is most needed. 

 
1 To our knowledge, the only study that adopted an ex-ante approach to the issue of occupational accidents 
is a forecasting exercise by Melchior et al. (2021), which relies on parametric time series methods to forecast 
work-related mortality rates in Brazil, without any focus on public policy analysis or place-based aspects. 

2 Among the aforementioned works, only Lee and Taylor (2019) employed fatality data as the outcome 
variable. 
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We then explore the implications of this mismatch by i) conducting a 

descriptive analysis to highlight the main differences in terms of demographic 

characteristics and economic structure between high-risk hotspots and other areas 

and ii) undertaking an ex-post evaluation of the impact of on-site inspections and 

public subsidies on the number of workplace deaths via double/debiased machine 

learning (Chernozhukov et al., 2018). Our findings indicate that, on average, an 

increase in the number of on-site inspections or in the amount of public subsidies 

has a null and insignificant impact. However, the effect becomes negative and 

statistically significant for ‘red flag’ areas independently classified as having the 

highest risk by the ex-ante ML forecasts, suggesting a high-risk/high-benefit 

linkage regarding the effects of these public policies. 

Overall, these results suggest that the current policy framework for 

occupational safety and health might be improved. Implementing an ML-powered 

place-based policy allocation rule would simultaneously increase the effectiveness 

of interventions—significantly enhancing workplace safety by better directing on-

site inspections and public subsidy assignments—and lower the costs of policy 

implementation. A back-of-the-envelope calculation based on the most 

conservative estimates suggests that replacing current allocation rules with 

machine forecasts would prevent approximately 86 fatal accidents per year, or 

approximately 10% of the annual on-the-job deaths registered in the period we 

study. Such a reduction could enhance Italian policymakers’ ability to consistently 

achieve their stated goal of reducing the total number of workplace deaths and 

making progress toward the achievement of the ambitious EU Vision Zero target 

(see EASHW, 2023), while at the same time decreasing the overall cost of the 

policy by concentrating efforts in vulnerable hotspots. The Italian case is relevant 

because the country ranked 8th among the EU-27 countries in 2021 in terms of 

deaths at work, reporting 3.3 workplace fatalities per day, equivalent to 2.7 deaths 

per 100,000 people employed, a figure 50% higher than the European Union 
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average.3 For this reason, the issue is currently highly salient in the media and 

prominent in policy debates.4 Italy is also a country where underreporting of 

workplace injuries is notably high due to the prevalence of informal work and the 

shadow economy, further motivating the use of fatalities over injuries.5 

In terms of contribution, our work can be placed at the intersection of 

three related but previously unintegrated strands of literature: the aforementioned 

occupational health and safety literature; the urban economics and public policy 

literature on place-based policies (see, among many, Blesse and Diegmann, 2022; 

Cerqua and Letta, 2022; Cerqua and Pellegrini, 2022; Criscuolo et al., 2019; 

Faggio 2019; Gallé et al., 2024; Freedman, 2015; Lu et al., 2019; Mayer et al., 

2017; Schweiger et al., 2022); and the body of works investigating the relationship 

between artificial intelligence (AI) and occupational and workplace outcomes (e.g. 

Autor, 2015; Brynjolfsson and Mitchel, 2017; Brynjolfsson et al., 2018; Felten et 

al., 2018). While the literature on place-based policies has largely concentrated on 

ex-post evaluation, mixed evidence concerning their effects has drawn attention 

to their targeting mechanisms, following the notion that, for place-based policies 

to succeed, they must target the right areas (Corinth et al., 2025). We show that 

ML can be leveraged for such targeting, shifting the paradigm from ex-post 

evaluation to ex-ante analysis of targeting mechanisms in place-based 

policymaking. Concerning the occupational and workplace impact of AI, we 

complement this literature, which mainly explores the workplace consequences of 

AI-related disruptions and the impact of automation on productivity and workers’ 

tasks and skills, to show that AI can contribute to the design and implementation 

 
3 The full data from Eurostat is available at https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Accidents_at_work_statistics. 
4 As an example, in his 2024 end-of-the-year speech, the Head of State Sergio Mattarella referred to workplace 
fatalities as a policy priority and commented on a recent tragedy, in which five workers died in a depot explosion 
in Tuscany, with the following statement: “Words of outrage are no longer enough: action is needed, with 
responsibility and severity. All fatal accidents can and must be prevented” (our translation). 

5 The underreporting of injuries in Southern Italy is evident when comparing the geographical patterns of 
on-the-job deaths versus all injuries (including non-fatal ones), which are reported in Figure A.1 of 
Supplemental Appendix A. In addition, Antonelli et al. (2024) reveal the existence of a relevant under-
notification phenomenon of accidents at work with respect to moderate accidents, which is higher especially 
for the southern regions of Italy. 
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of workplace policies aimed at increasing on-the-job safety for workers. 

Methodologically, our work expands the growing literature in economics 

that harnesses the predictive power of ML techniques to improve decision-making 

(Kleinberg et al., 2015), informing program design and resource allocation across 

diverse sectors and domains, such as corruption (Ash et al., 2024), taxation 

(Andini et al., 2018; Battaglini et al., 2024), local public finance (Antulov-

Fantulin et al., 2021), education (Athey et al., 2025), energy efficiency 

(Christensen et al., 2024), and health (Carrieri et al., 2021; Glaeser et al., 2016). 

We build upon these studies by focusing on a still unexplored issue and go beyond 

them by proposing a ML-based approach explicitly suited for panel data 

forecasting owing to a rigorous panel cross-validation strategy. 

More generally, the problem of whom to target arises in many settings 

(Athey et al., 2025), some of which are inherently complex and characterized by 

a low signal-to-noise ratio, making it challenging for traditional approaches to 

recover policy-relevant signals. In this respect, our work introduces an original 

approach based on machine-guided territorial policies that can also be adopted to 

identify vulnerability hotspots and inform public decision making to address 

societal issues in other domains that are rarely examined from a place-based 

perspective. For example, complex phenomena such as gender violence, suicides, 

and gambling addiction might also exhibit systematic territorial patterns and 

benefit from a targeting analysis coupling AI tools with granular territorial data. 

The rest of this paper is arranged as follows. Section 2 presents the 

institutional framework. Section 3 describes the data and methods, and Section 4 

presents the results. Section 5 concludes. 

2. Institutional framework 

The Italian system for ensuring workplace safety involves multiple institutional 

actors, primarily from the Ministry of Health and the Ministry of Labor. Three 

main activities can be identified: workplace supervision and inspections, insurance 
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against workplace injuries, and public incentives for firms’ investments in 

occupational safety. Prior to 2015, workplace inspections were shared between the 

Ministry of Labor, the Italian National Institute for Insurance against Accidents 

at Work (INAIL), and the Italian National Social Security Institute (INPS). Then, 

Law no. 149/2015 established the National Inspectorate for Labor (Ispettorato 

Nazionale del Lavoro – INL), which subsequently centralized these inspection 

responsibilities.6 The INL exercises and coordinates surveillance across the 

national territory, covering work, contributions, mandatory insurance, social 

legislation, and health and safety protection in workplaces.7 Inspection activities 

are complemented by local health units (Aziende Sanitarie Locali), whose activity 

depends directly on regional governments. As of December 31, 2022, the INL 

coordinated 3,983 inspectors, comprising i) 2,412 civilian INL inspectors, ii) 884 

INPS inspectors, iii) 210 INAIL inspectors, and iv) 477 military personnel from 

the Arma, partially assigned to judicial police functions.8 Inspections may 

originate from reported concerns (with limited anonymous reporting) or through 

proactive “intelligence activities” initiated by the INL to identify potential high-

risk cases. These investigations can proceed in the absence of the employer and 

culminate in a detailed report. In 2022, the INL carried out 82,183 inspections, 

revealing 314,069 violations of worker protection regulations, i.e., 3.8 violations 

per inspection, including 19,932 cases of undeclared labor. 

In addition to workplace inspections, the workplace safety system includes 

insurance coverage for occupational injuries. This function is overseen by INAIL, 

which manages the mandatory insurance scheme for workplace injuries and 

 
6 The aim of the law was to overcome the fragmentation of inspection activities among the different 
institutions that monitor compliance with labor contracts (social security, black practices, etc.), and health 
and safety conditions (compulsory insurances, regular work environments, etc.), concentrating them in a 
single agency (Colombo et al., 2019). 
7 The INL, which operates under the direction of the Italian Ministry of Labor, covers the whole Italian 
territory with the exception of three special-status regions: Aosta Valley, Sicily and Trentino-South Tyrol, 
where the functions of the INL are carried out by regional and provincial bodies through the Local Health 
Units. 
8 See here (in Italian). Moreover, in July 2024, the INL announced the recruitment of a total of 750 non-
executive personnel on a permanent basis, to be classified in the functional area of technical health and safety 
inspection officers. 
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occupational diseases while also promoting precautionary measures to enhance 

worker protection and support workers’ “rehabilitation and reintegration to social 

life and work” (Campo et al., 2020). To further enhance workers’ protection, in 

2010, INAIL launched a state-aid scheme (named “ISI calls”) to support firms’ 

(especially SMEs) investments to improve occupational safety and health 

performance. With a total funding allocation exceeding 3 billion euros from 2010, 

the ISI calls represent the most significant incentive measure dedicated to the 

protection of health and safety at the European level (Castaldo et al., 2023). The 

rationale for this policy is that SMEs can be constrained in investments for 

workplace safety, making them underequipped (Barile et al., 2024). This is 

particularly relevant for the Italian context, where SMEs represent over 75% of 

the industrial sector. Eligible proposals may include investment projects, training 

programs, and the adoption of organizational models and social responsibility 

frameworks. The recognized incentive consists of a nonrepayable capital grant 

covering 50% to 75% of the project costs, with grants ranging from a minimum 

of €5,000 to a maximum of €100,000. The assignment process is conducted at the 

regional level through calls for tenders, which are based on eligibility criteria that 

do not consider the risk of workplace accidents.9 By not taking accident risk into 

account, the geographical allocation of funds is unlikely to optimize the reduction 

of workplace injuries and fatalities. 

3. Data and Methodology 

3.1 Data 

3.1.1 Data on workplace fatalities 

For the empirical analysis, we use data on occupational fatalities provided by 

 
9 To submit an application, businesses must meet the eligibility requirements. These include that the firm 
must not be undergoing voluntary liquidation or subject to any insolvency proceedings, must comply with 
insurance and social security contribution obligations, must not have requested or received other public 
funding for the proposed project, nor have been granted funding approval under the three previous calls for 
proposals. 
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INAIL, the authority responsible for managing insurance and compensation for 

work-related injuries and fatalities. The workforce covered by INAIL is quite 

extensive, encompassing approximately 80% of total employment; however, it 

does not include certain special categories of workers, such as firefighters, police 

officers, military personnel, and journalists, as they are covered by other insurers 

(Filomena and Picchio, 2024). INAIL provides data at the municipal level on the 

number of workers’ fatalities for the period 2017-2023, split by gender, 

macroeconomic sector (agriculture, public sector, industry and services) and place 

of occurrence (“in itinere” or “on-the-job”). Occupational fatalities include both 

deaths occurring at the work site (“on-the-job”) and those occurring during the 

commute to work (so-called “in itinere” fatalities). The latter also encompass 

incidents between the workplace and a lunch location or between two different 

workplaces. In Italy, the majority of occupational fatalities occur at the workplace 

itself: over the period 2017-2023, 76.9% of these deaths fall into this category. 

Table 1 reports the number of occupational deaths by sector of activity in 

Italy for the period 2017-2023, split by “on-the-job” and “in itinere”. The table 

clearly shows the sharp increase in the number of “on-the-job” deaths in 2020 and 

2021 (Panel B) due to the COVID-19 pandemic. In the same years, it was possible 

to observe a decrease in the number of “in itinere” deaths (Panel C) due to the 

reduction in mobility and economic activities caused by the pandemic.10 

Nevertheless, the impact of the COVID-19 pandemic on occupational deaths was 

limited to 2020 and 2021. According to the INAIL Annual Report (2022), the 

number of deaths directly or indirectly attributable to COVID-19 in 2022 was 

only 8. The similarity in the number of occupational deaths between 2017-2019 

and 2022-2023 suggests that the COVID-19 shock can be considered a temporary 

 
10 During the COVID-19 pandemic, Italy implemented stringent measures to curb the spread of the virus, 
including the closure of non-essential industries. In March 2020, the Italian government issued a decree 
ordering the shutdown of all non-essential factories and businesses, significantly affecting the country’s 
workforce. This decision was part of a broader national lockdown, one of the first and most severe in Europe, 
which also included restrictions on movement and public gatherings. The closure impacted millions of workers 
across various sectors, from manufacturing to retail, as the government aimed to protect public health and 
prevent the healthcare system from being overwhelmed. 
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shock, after which conditions returned to “business as usual”, at least concerning 

worker safety. 

Table 1: Yearly number of occupational fatalities in Italy 

Panel A – Total number of occupational fatalities 

 2017 2018 2019 2020 2021 2022 2023 

Industry and Services 981 1,122 1,044 1,503 1,228 1,073 978 

Agriculture 163 152 171 138 148 137 133 

Public Sector 34 20 24 82 59 37 36 

Total 1,178 1,294 1,239 1,723 1,435 1,247 1,147 

Panel B – “On-the-job” workplace fatalities 

 2017 2018 2019 2020 2021 2022 2023 

Industry and Services 705 796 748 1,298 979 775 740 

Agriculture 139 118 144 120 127 116 121 

Public Sector 17 7 12 74 49 20 21 

Total 861 921 904 1,492 1,155 911 882 

Panel C – “In itinere” fatalities 

 2017 2018 2019 2020 2021 2022 2023 

Industry and Services 276 326 296 205 249 298 238 

Agriculture 24 34 27 18 21 21 12 

Public Sector 17 13 12 8 10 17 15 

Total 317 373 335 231 280 336 265 

Notes: The table reports the number of occupational fatalities in Italy over time by sector of activity. The 

data are provided by INAIL. Table A.1 in Supplemental Appendix A presents the number of deaths by year 

and sector before and after the imputation for the years 2020 and 2021. 

The primary goal of the targeting analysis is to identify the most significant 

territorial predictors of “on-the-job” (workplace) fatalities in the near future and 

to create a risk map for policy implementation during “normal times.” However, 

workplace deaths caused by COVID-19 pose a challenge, as they skew the number 

of workplace deaths observed in “normal times,” particularly in certain areas (see 

Cerqua et al., 2021). Failing to account for these COVID-19-related workplace 

deaths would result in ML algorithms learning and forecasting non-systematic 

patterns associated with a temporary shock and possibly erroneous selection of 

the most relevant territorial predictors. A risk map based on such estimates would 

be biased and could undermine rather than support policy efforts (see 

Supplemental Appendix B for a more detailed discussion on the consequences of 
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not accounting for COVID-19-related workplace deaths). Consequently, before 

conducting the analysis, we impute the number of “on-the-job” deaths for the 

areas most impacted by the pandemic in 2020 and 2021. This modeling choice 

follows the approach developed by the World Health Organization (WHO) in 

imputing all-cause death data in the no-pandemic counterfactual scenario to 

provide official estimates of the global excess death toll associated with the 

COVID-19 pandemic (see the two publications by the WHO team, Knutson et 

al., 2023; Msemburi et al., 2023). We emphasize that this imputation is conducted 

solely to enable the models to learn the true data-generating process during 

ordinary times (we report more details on the imputation process in Supplemental 

Appendix B). As detailed below, the out-of-sample forecasting ability of our 

models, our primary focus, will be evaluated exclusively with real-world, non-

imputed data. 

We have chosen the LLM level as the most appropriate unit of spatial 

analysis.11 Each LLM is an aggregation of two or more neighboring municipalities 

(13 on average), defined by the Italian National Institute of Statistics (Istat) on 

the basis of daily commuting flows from the place of residence to the place of 

work. Opting for LLMs rather than municipalities as the unit of spatial analysis 

achieves a compromise between data granularity and the relative rarity of 

workplace deaths. As a result, we use yearly LLM data spanning the period from 

2017 to 2023. We cover all 610 Italian LLMs and use the number of on-the-job 

deaths as the main outcome variable. 

3.1.2 Set of predictors 

The initial set of predictors comprises 160 variables collected at the LLM level. 

The set includes a detailed description of the industrial structure, macro-regional 

dummies, labor market characteristics, socio-economic and demographic data, 

features of the housing market, local politics, and detailed information on several 

 
11 The criteria used to determine Italian LLMs are similar to those used to define Metropolitan Statistical 
Areas in the US or Travel to Work Areas in the UK. 
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aspects of workplace deaths. In particular, we use as predictors the lagged values 

of the number of “in itinere” deaths (overall, for each sector and by gender) and 

the number of “on-the-job” deaths (overall, for each sector and by gender) (see 

Table A.2 in Supplemental Appendix A for a detailed description of the variables 

and their sources and Table A.3 for the descriptive statistics). In this set of 

covariates, we included the first lag of all time-varying predictors (including the 

dependent variable), along with their first lagged differences, to incorporate 

temporal dynamics and improve the forecasting model. This implies that we 

collapsed the original 2017–2023 dataset into a dataset covering the period 2019–

2023. 

3.1.3 Inspections and public subsidies 

Finally, we collected data on the number of inspections from the INL and the 

amount of state aid received annually through the ISI calls by each territory to 

support firm investments in occupational safety and health. Owing to privacy 

concerns, these variables are only available at the provincial level. We use data 

on the number of inspections and the amount of public subsidies to assess whether 

public efforts are currently deployed in the most effective way to reduce workplace 

fatalities. See Table A.4 in Supplemental Appendix A for a detailed description 

of the variables used in the ex-post analysis and their sources and Table A.5 for 

the descriptive statistics.  

An important caveat lies in the partial nature of the measures analyzed: 

inspections and subsidies do not cover all policy interventions implemented in 

Italy to address occupational safety and health. These specific dimensions were 

chosen because they are two of the most relevant policies, and we could not access 

data on other policies. It is therefore crucial, both when interpreting the results 

and in assessing external validity, to recognize that while highly relevant, they 

are not the only measures enacted to reduce workplace fatalities by Italian 

policymakers. 
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Regarding the ISI public subsidy data, additional caution is warranted due to the 

multifaceted nature of subsidies available to firms in Italy. Some of these 

subsidies, although not explicitly linked to occupational safety and health, may 

still contribute to improving workplace safety for employees. As a result, the 

distribution of public subsidies for occupational safety and health examined later 

in this study complements other forms of subsidies that are excluded from our 

analysis. This should be carefully considered when evaluating the findings of both 

the targeting and counterfactual analyses. 

3.2 Methodology 

The primary objective of this empirical analysis is to develop an ML pipeline to 

forecast the number of on-the-job fatalities in a given year for all LLMs. If these 

forecasts prove reliable, policymakers could leverage them to focus resources on 

the areas most at risk. To achieve this aim, it is essential to treat available data 

in a way that can resemble a real-world situation. In this regard, applying a 

standard ML pipeline to panel data is problematic owing to their peculiar nature, 

as they are inherently characterized by substantial cross-sectional and temporal 

autocorrelation, compared with the type of data for which ML techniques were 

originally developed. To address the challenges involving the application of ML 

routines to panel data, such as cross-validation (Arkhangelsky and Imbens, 2024), 

our approach is based on the following key departures from the standard ML 

routine: 

- We use only lagged values of predictors in the ML pipeline to 

maintain the integrity of forecasts, as forecasting future data points using 

exclusively past information is key.12 To forecast future values of a 

 
12 To illustrate this point, consider the following example: the number of deaths on the job is mechanically 
correlated with the number of workers. Imagine a massive employment shock occurs, causing many people 
to lose their jobs in a given year. Including the contemporaneous value of such a predictor would lead the 
algorithm to forecast a drop in the number of deaths due to the mechanical correlation learned from past 
data (i.e., if the algorithm sees a drop in the key predictor, which is highly and positively correlated with 
the outcome, it predicts an analogous drop in the outcome). However, assuming the shock could not be 
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variable, only information available at the time the forecast is made can 

be used; i.e., the forecasting ability of a model must be evaluated by 

generating forecasts over some past period only using data known at each 

forecast origin (Petropoulos et al., 2022). 

- We diverge from the conventional ML approach, which typically 

uses a random division of the sample into training and testing sets. Instead, 

we implement a non-random, time-based splitting criterion to divide our 

sample into two disjoint sets (Cerqua, Letta, and Menchetti, 2024). This 

methodological choice is driven by the need to preserve the temporal 

sequence of the dataset and prevent time-dependent data leakage. Such 

leakage would occur if a random split allowed future observations to be 

included in the training set, thereby inappropriately influencing predictions 

of past events in the testing set (Cerqua, Letta and Pinto, 2024). Owing 

to these adjustments to the ML forecasting pipeline, we can obtain 

unbiased forecasts that are not overoptimistic with respect to the true out-

of-sample performance on future data. 

- For the same reason related to data leakage issues, we replace the 

standard random k-fold cross-validation (CV) routine typically applied in 

the ML literature (Hastie et al., 2009) with a panel CV strategy, which is 

adapted from the time series forecasting literature and fully described 

below. 

Our starting point is the balanced panel dataset at the LLM-level from 

2017 to 2023 described in Section 3.1. We employ five ML algorithms: two linear—

LASSO and partial least squares (PLS)—two tree-based—random forest and 

stochastic gradient boosting—and the Long Short-Term Memory neural networks 

(LSTMs).13 In the main analysis, we train these ML algorithms using only data 

 
forecasted based on past data, the ability to forecast is an illusion due to the inclusion of a predictor 
contemporaneous to the outcome. 
13 LASSO is a regression analysis linear method that performs both variable selection and regularization. It 
works by imposing a constraint on the sum of the absolute values of the model coefficients, effectively 
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up to 2022 and use the value of the dependent variable in 2023 only in the held-

out testing set to assess the final accuracy of the forecasts.14 During the training 

phase, we employ a panel CV based on an expanding forecasting origin (Hyndman 

& Athanasopoulos, 2021), in which we iteratively train ML algorithms on 

expanding training sets from earlier periods and test their performance on sliding 

testing sets from later periods to select hyperparameters that optimize their 

performance in forecasting future outcome data points. In particular, as shown in 

Figure A.2 in Supplemental Appendix A, we use the first fold (2019) as the 

training set and the second fold (2020) as the test set; then the first two folds as 

the training set (2019 and 2020) and the third fold (2021) as the test set; and 

finally the first three folds (2019, 2020, and 2021) as the training set and the 

fourth fold (2022) as the test set. We run the ML algorithms—using a grid search 

for hyperparameter configuration—across all three training sets, test their 

performances on the corresponding test sets, and select the hyperparameters of 

each algorithm that result in the best average performance. The tuned models are 

then applied to the full 2019-2022 dataset to forecast 2023 outcomes out of sample, 

and their performance is evaluated on these data to determine the winner of the 

horse race. Since 2023 might just be a ‘lucky year’ in terms of forecasting 

performance, in a separate analysis, we repeat the same approach but exclude 

data from 2023, using only predictors in 2020 and 2021 to forecast 2022 outcomes 

on the testing set. This additional check ensures that the ML forecasting pipeline 

 
shrinking some coefficients to zero. PLS reduces dimensionality by projecting predictors and responses onto 
orthogonal components that maximize covariance, thus improving predictive power. Random forest is an 
ensemble learning technique that constructs many decision trees during training and aggregates their 
predictions to increase out-of-sample accuracy by reducing overfitting risk. Each tree is built using only a 
random subset of the training data and of the predictors at each candidate split. The final prediction is 
determined by averaging the outputs of all the trees. Stochastic gradient boosting is also a tree-based 
ensemble technique, but it works in a sequential manner, where each new tree works on the residuals, i.e., 
the errors of the previous ones, and improves on gradient boosting. The final output is a weighted sum of all 
tree predictions. For a more detailed description of these algorithms, see Hastie et al. (2009). LSTMs are a 
specialized type of recurrent neural networks (RNNs) adept at learning order dependence in sequence 
prediction problems using textual or time series data. 
14 It is worth noting that in situations with only a few time periods available, time-series techniques like 
those adopted by Melchior et al. (2021) are not feasible, as they require at least several dozen time periods 
for effective implementation. 
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produces accurate forecasts for any held-out year.15 The detailed implementation 

process is reported in Table 2. 

Table 2: ML forecasting pipeline 

Preliminary step 

Data splitting. We split the full dataset into a training set with data on Y from 2019 to 2022 

and a testing set with data on Y in 2023. 

Training phase – Use only the training set 

1. Algorithm selection. We select five supervised ML algorithms: 1) LASSO; 2) Partial 

Least Squares; 3) stochastic gradient boosting; 4) random forest; 5) LSTMs. As we are agnostic 

about the functional form of the underlying data-generating process, we opt for a mix of non-

linear and linear models. 

2. Principled input selection. We build an initial LLM dataset with 160 predictors on the 

basis of literature insights and data availability (see the Data section). From this dataset, we 

then keep only the most important predictors selected by a preliminary random forest run on 

the training data (see step below), following the approach proposed by Athey and Wager (2019). 

However, for each algorithm, we also report the estimates obtained using all 160 predictors. 

Figure A.3 in Supplemental Appendix A presents the relative importance of the 20 variables 

with the highest scores assigned by the preliminary random forest model. It is interesting to 

note that the lagged value of the dependent variable ranks only 14th in the ranking of most 

predictive covariates. 

3. Panel cross-validation (CV). For each algorithm, we tune hyperparameters via panel 

CV, involving iterative estimation: we use covariates in 2017 and 2018 to forecast ��,����, 

covariates in 2018 and 2019 to forecast ��,����, covariates in 2019 and 2020 to forecast ��,���� 

and covariates in 2020 and 2021 to forecast ��,����. For each algorithm, we consider the specific 

hyperparameter(s),16 and we also treat the number of covariates as an additional 

hyperparameter (by using the most predictive 10, 20, or 30 covariates selected via the 

preliminary random forest analysis—step 2 above—or all 160 covariates.). 

4. We retrain all the algorithms on the full 2019-2022 sample using the hyperparameters 

cross-validated in the previous step to forecast ��,����. 

Testing phase 

1. We assess the performance for the four algorithms by comparing average forecasted 

 
15 To tune the model used for forecasting outcomes in 2022 out of sample, we exclude the last training-testing 
pair from the last row of Figure A.2 to avoid data leakage. 
16 The hyperparameters we select via panel CV are the following: for LASSO, the parameter λ which controls 
the shrinkage penalty; for the random forest, the parameter m, i.e., the number of features randomly sampled 
as candidates at each split (for the number of trees to grow, instead, we use the default value of 1,000); for 
boosting, the shrinkage parameter representing the learning rate, the number of trees to fit and the minimum 
number of observations in the terminal nodes of the tree; and for LSTMs the number of hidden layers and 
the number of neurons. Panel CV is used by running different models with several candidate values (or 
combinations of values, in the case of boosting) for all these parameters. 
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vs. actual outcomes on the 2023 held-out test data. In particular, we estimate the mean 

squared forecasting error (MSFE). 

2. Final model selection. On the basis of the comparative performance assessment, we pick 

the best-performing algorithm (random forest) to produce the final risk map. 

 

The general estimation model underlying the forecasting pipeline of Table 

2 is the one reported in Equation 1: 

�	,
  = �(�	,
−1, �	,
−2, �	,
−1, �	,
−2) + 	,
            (1) 

This forecasting model aims to predict the number of workplace fatalities 

Y in LLM i and year t, where the outcome is assumed to be a function of highly 

predictive Y outcome lags and lagged covariates � from the previous two years.17 

We remain agnostic regarding the data-generating process and flexibly allow for 

possibly arbitrary complexity of the function f to be addressed via a range of ML 

algorithms characterized by varying degrees of complexity. 

3.2.1 Ex-post impact assessment 

For the ex-post analysis of the impact of current measures (on-site work 

inspections and public subsidies for occupational safety) on the number of 

workplace deaths, we employ the double/debiased ML method developed by 

Chernozhukov et al. (2018). The method is based on double orthogonalization 

and leverages the Frisch‒Waugh‒Lovell theorem to assess the impact of a 

treatment on the outcome of interest under a partially linear model, where the 

treatment effect is assumed to be additive, whereas the data-generating process 

of the untreated potential outcome can be arbitrarily complex. This involves 

estimating two predictive models, one for the treatment and another for the 

outcome, to remove bias from confounding factors. The idea is to use ML models 

to create an orthogonal score for the target parameter, which helps in removing 

the bias introduced by regularization. In other words, the method uses flexible 

 
17 Where the set of predictors includes only those selected at the end of step 2 in Table 2. 
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ML techniques to select the most important confounders and flexibly adjusts for 

them. Once the treatment and outcome have been debiased and denoised using 

ML learners, the average treatment effect is estimated via OLS regression of the 

residualized outcome on the residualized treatment. The main assumption is that 

of unconfoundedness, i.e., that the treatment is orthogonal to the outcome given 

the covariates. Furthermore, double/debiased ML relies on cross-fitting to prevent 

overfitting. We use several different ML learners and then rely on the coefficient 

estimates of the best-performing learner in terms of the root mean squared error 

of both the outcome and treatment regressions. Specifically, we employ a set of 

linear (LASSO, ridge, elastic net) and non-linear (random forest, boosting, 

artificial neural networks) ML techniques, as well as a simple OLS regression 

model for comparability.18 Originally developed for cross-sectional settings, the 

method is now also routinely applied to panel data settings (e.g., Chernozhukov 

et al., 2022; Girma & Paton, 2024). Compared with traditional estimators, the 

key advantage of double ML is that it does not make any a priori assumptions or 

subjective judgments regarding the functional form of the data-generating process. 

We apply this technique for two separate impact evaluation analyses: one 

on the effect of on-site inspections and the other on the impact of public subsidies 

for occupational safety. For these analyses, we employ a dataset at the province 

level, which offers a reasonably high level of resolution and the only administrative 

level for which inspection and subsidy data are available. Provinces in Italy are 

broadly comparable to counties in the United States (Barone et al., 2024) and 

have been employed by many studies interested in the detection of local 

phenomena (e.g., Le Moglie and Sorrenti, 2022). To overcome the problem 

represented by the outlier years marked by the COVID-19 pandemic, we run the 

analysis on a first-differenced dataset where the outcome is the province-level 

change in the number of workplace deaths per 100,000 inhabitants between 2019 

and 2023.  

 
18 See Hastie et al. (2009) for a detailed description of the ML techniques. 
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We explore the effects of two policies: on-site inspections and public 

subsidies to firms. Hence, the treatment is a binary variable taking a value of 1 if 

there has been an increase in the number of inspections (and, alternatively, in the 

amount of public subsidies) per 100,000 inhabitants between the years 2018-2019 

and 2022-2023 and 0 otherwise, and the confounders are changes in the lagged 

values of a set of province-level covariates aimed at capturing a variety of 

demographic, socio-economic, and geographic characteristics of Italian provinces, 

including all the variables that we later identify as structurally different between 

high-risk areas and other areas in the descriptive statistics provided at the end of 

the forecasting analysis (see Table A.4 for their description and A.5 for summary 

statistics). Considering that we have data for 95 provinces and include 27 

predictors, the ratio of predictors to the number of observations approaches a 

high-dimensional setting, where ML algorithms have an edge over traditional 

methods, particularly in terms of handling complex interactions and non-

linearities and avoiding overfitting. 

Since our treatment variables are both highly endogenous and there are 

multiple confounding factors, we follow Britto et al. (2022) in using first-

differencing for causal ML techniques based on the unconfoundedness assumption, 

ensuring that double orthogonalization is plausible in our context and that time-

invariant unobserved heterogeneity is properly accounted for. First-differencing 

has recently been assessed as the most appropriate method for combining double 

machine learning with panel data (Clarke and Polselli, 2025). This difference-in-

differences framework, which uses only 2019 and 2023 as the start and endpoints 

for the death data, not only prevents data quality issues for the pandemic years 

that led us to impute data for those years in the forecasting exercise but also 

allows us to filter out the impact of the COVID-19 pandemic, as it was a systemic 

shock common to both treated and untreated areas. For the timing of inspections, 

we follow Johnson et al. (2023) in that we assume that the impact of inspections 

can either be contemporaneous or lagged with respect to the year in which the 



20 

number of deaths is measured. We assume the same for our alternative policy of 

interest, the amount of public subsidies for occupational safety and health. 

Consequently, the partially linear model we employ for this counterfactual 

analysis is as follows: 

�Y�,��������� = ���D�,����/�� � ����/����� + �����,���������� + ��,���������         (2) 

where on the left-hand side, we have the change in the number of workplace 

fatalities �Y in province p between 2023 and 2019. On the right-hand side, we 

have the change in the treatment variable D, which takes value 1 if number of 

inspections (and, alternatively, the amount of public subsidies for occupational 

safety and health) in province p has increased between 2018-19 and 2022-2023 

(allowing for both contemporaneous and lagged impacts) and 0 otherwise, plus a 

vector of covariates composed of changes in the lagged values of a vector of 

confounders Z, without any a priori assumption regarding the function g that 

maps these covariates to the outcome. The coefficient � captures the impact of 

an increase in inspections (or in public subsidies) on the change in workplace 

deaths. We estimate it via a final residual-on-residual regression of the 

residualized outcome on the residualized treatment after flexibly debiasing and 

denoising them from confounders with double orthogonalization and preventing 

overfitting with 5-fold cross-fitting. Our interest in this ex-post analysis is twofold: 

i) to assess the overall effect of increasing workplace inspections and public 

subsidies on the risk of death on the job and ii) to connect this counterfactual 

analysis to the previous risk forecasting analysis to verify whether the impacts are 

stronger in areas forecasted to be at the highest risk by the independently run 

ML forecasting analysis. Should this prove to be the case, it would imply that 

replacing current allocation rules with machine predictions would boost the 

effectiveness of on-site inspections and/or public subsides by targeting red flag 

areas that are more responsive to this policy intervention. For this reason, after 

running the main analysis where we consider ‘treated’ all areas experiencing an 



21 

increase in inspections (or the amount of subsidies received) between 2018-2019 

and 2022-2023, we conduct an additional heterogeneity analysis where we consider 

‘treated’ only a subsample of areas experiencing such an increase, namely, those 

that belong to the highest risk decile for 2023 according to the ex-ante forecasts 

of the best-performing ML technique, and check whether the estimates differ with 

respect to the effect retrieved in the main analysis. In this way, we effectively 

simulate a scenario in which a policymaker increases the number of inspections 

and subsidies in certain high-risk areas.  

4. Results 

4.1 Main estimates 

The last column of Table 3 below reports the performance—in terms of MSFE—

of the five selected ML algorithms in forecasting the number of on-the-job deaths 

in 2023 for each LLM. It also reports the performance for different numbers of 

covariates, showing that, at least for this application, using only a small subset of 

the most predictive covariates results in more accurate forecasts. The best 

performing algorithm is PLS with 9 principal components. This algorithm 

produces an MSFE of 1.694, which is approximately 5% smaller than those of 

LASSO and random forest, 10% smaller than the LSTMs and 20% smaller than 

the stochastic gradient boosting. However, an external benchmark is needed to 

assess whether this ML performance is truly accurate. To this end, we compare 

the performance of the ML algorithms with that of the naïve estimator, i.e., a 

basic method that is widely used in the forecasting literature and used as a 

forecast for the ith LLM at time t+1 (��,���), which is the last observed value of � 

at time t (��,�) (Hyndman and Athanasopoulos, 2021). In other words, the naïve 

estimator uses the last available data point as a forecast for the subsequent one; 

it is intuitive enough that it could be used as a simple risk assessment by a 

policymaker. The MSFE error of the naïve estimator is 3.031, which is much 

larger than that of all the ML algorithms and 79% larger than that of the PLS, 
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the best performing technique. 

In Supplemental Appendix A, we also test whether the ML algorithms provide 

accurate forecasts for every population size category (Table A.6) and for an 

alternative held-out year (Table A.7). These tables demonstrate that the ML 

algorithms provide reliable forecasts and outperform the naïve estimator for each 

population size. Additionally, all the models consistently overtake the naïve 

estimator even for 2022. Notably, the LSTMs outperform all the other models in 

the smallest municipalities, whereas LASSO is the best-performing algorithm 

when 2022 is used as the held-out year. 

Table 3: Performance by number of predictors for 2023 

 10 variables 20 variables 30 variables 
ALL (160) 

variables 

Smallest 

MSFE 

LASSO 1.734 1.729 1.763 1.968 1.729 

PLS 1.727 1.694 1.855 2.432 1.694 

Random Forest 1.810 1.784 1.785 1.839 1.784 

Stochastic gradient boosting 2.190 2.741 2.555 2.184 2.184 

Neural network 1.893 5.421 2.180 2.449 1.893 

Naïve 3.031 

Notes: We report the parameters selected via the panel CV for the best performing case of each ML algorithm. 

For boosting, 1,500 trees were selected, 2 as the maximum depth of each tree, 10 as the minimum number 

of observations in terminal nodes and 0.01 for the learning rate. For LASSO, penalty parameters equal to 

0.9, 9 as the number of components (PLS), and 5 for the number of variables randomly sampled as candidates 

at each split (random forest) are used. The neural network comprises two LSTM layers followed by a dense 

layer. The first LSTM layer has 500 units and feeds into a second LSTM layer with 50 units. A dense layer 

with a single unit produces the final output, using ReLU activation throughout. 

Figure 1 presents two diagnostic tests for the best-performing ML 

algorithm, comparing the actual number of on-the-job deaths in each LLM in 

2023 with the forecasts obtained via PLS. The scatterplot (Panel A) shows that 

the forecasts are quite accurate, as the data points are closely aligned along the 

45-degree diagonal. Notably, the correlation between the observed and forecasted 

outcomes is extremely high, i.e., 0.929, demonstrating the ability of the selected 

ML algorithm to accurately forecast the number of on-the-job deaths in each 

LLM. Panel B of Figure 1 illustrates that the distribution of the forecasting errors 

is approximately normal and centered around zero, suggesting that there is no 
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bias in the forecasts. We also run the Holden-Peel test (1990) to provide a formal 

test in which there is no bias in the forecast errors. The p-value of the test is 

0.749, suggesting that there is no systematic forecast error. This also implies that 

in this context, there are no substantial distributional shifts over time or that ML 

algorithms in this context are capable of capturing them. 

Figure 1: Forecasted and actual number of on-the-job deaths in 2023 

Panel A – Scatterplot of forecasted vs. 
actual on-the-job deaths in 2023

 

 
Panel B – Distribution of the forecasting error

 
Notes: Data are at the LLM-level and refer to the held-out year 2023. 

Since transparency is particularly important when ML tools are intended 

for use in public policy (Athey, 2017), we exploit Interpretable ML and 

Explainable AI (Lundberg & Lee, 2017; Lundberg et al., 2020; Molnar, 2020) to 

create SHapley Additive exPlanations (SHAP) values for the best-performing PLS 

algorithm. By decomposing the role played by key covariates, we make machine 

predictions more transparent, communicable, and interpretable. The SHAP values 

displayed in Figure A.4 in Supplemental Appendix A indicate that areas 

characterized by a lower number of plants and workers in general and in the 

construction sector in particular, as well as having smaller populations and a lower 

incidence of self-employment, tend to experience fewer fatal accidents. These 

results align with economic intuition, which strengthens the reliability of the 

models. 

To further enhance interpretability and corroborate insights from the 
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SHAP values, we also present an intuitive ‘local surrogate model’ (Molnar, 2020) 

represented by a simple decision tree. In this model, we regress the predictions of 

the best-performing model (PLS) for 2023 LLM-level analysis on the set of 

predictors employed.19 The purpose here is to replace the output of more complex 

and less interpretable models with an easy-to-understand decision rule for the 

prediction task. The resulting tree is reported in Figure A.5 and confirms that the 

number of workers in the construction sector and the total number of plants in a 

local economy in a given year are key predictors of the future number of on-the-

job deaths. 

In addition to the interpretability of the models, we further validate the 

high accuracy of the ML forecasts by mapping, as shown in Figure 2, the forecasts 

of on-the-job deaths for 2023 (central panel) alongside the observed numbers for 

the same year (left panel), demonstrating strong adherence between the two. This 

is confirmed by the forecasting error displayed in the right panel of Figure 2, 

which also indicates a lack of spatial autocorrelation (Moran’s I index of +0.024). 

Figure 2: Observed vs. forecasted outcome data for the testing set year (2023) 

 
Notes: We have used Moran’s I index, which is based on a queen contiguity spatial matrix, to test for the 

possible presence of spatial autocorrelation in the forecasting error. We obtained a Moran’s I index of 0.024, 

which provides reassurance about the potential presence of spatial heterogeneity we did not account for. 

We have also tested whether the forecasting approach based on ML 

algorithms is effective for alternative outcome measures. In particular, we used 

 
19 Following Molnar (2020), we set the maximum depth of the three to 3 to ensure interpretability, and the 
minimum number of observations that must exist in a node to attempt a split equal to 30. 
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the number of on-the-job deaths in each of the three sectors for which we 

disaggregated the data and considered only women as alternative dependent 

variables. The performance of the ML algorithms for these analyses is reported in 

Table 4. Importantly, for each outcome, every algorithm substantially 

outperforms the naïve estimator. Overall, this demonstrates the efficacy of a data-

driven approach in targeting workplace deaths, even when a more detailed 

disaggregation of the data is considered. Although these outcomes are generally 

less frequent and therefore more challenging to forecast, ML algorithms, combined 

with a rich and informative dataset and a rigorous forecasting pipeline, are able 

to reliably anticipate the occurrence of workplace deaths. Finally, in Supplemental 

Appendix B, we provide detailed sensitivity checks on the consequences of not 

accounting for COVID-19-related workplace deaths. 

Table 4: Performance with alternative outcomes 

 Agriculture 
Industry and 

services 
Public sector Women 

LASSO 0.227 1.358 0.044 0.104 

PLS 0.228 1.385 0.043 0.096 

Random Forest 0.247 1.409 0.046 0.101 

Stochastic gradient 

boosting 
0.226 1.780 0.048 0.125 

Neural network 0.237 1.681 0.057 0.113 

Naïve 0.426 2.516 0.077 0.190 

Notes: The alternative outcome measures include the number of on-the-job deaths in each of the three sectors for which 

we have disaggregated data and the number of on-the-job deaths among women. In every analysis, the held-out year is 

2023. Each cell reports the MSFE for the best performing version of each ML algorithm. 

The forecasting analysis outlined above yields a distribution of risk across LLMs. 

Naturally, the regulator is often interested not only in gaining access to accurate 

forecasts of the areas at highest risk but also, and perhaps more importantly, in 

detailed insights regarding the main territorial drivers and predictors 

underpinning these forecasts. Moreover, understanding the key characteristics of 

the areas most at risk—specifically how they differ structurally across several 

critical dimensions compared to less risky areas—is paramount. Therefore, the 

forecasting analysis must necessarily be supplemented by additional investigations 

addressing the following question: What distinguishes high-risk areas in terms of 
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socio-economic, demographic, and geographic characteristics? 

To answer this question, we exploit the estimates for workplace deaths to flag 

fatality hotspots and derive a risk classification for each LLM, defining ‘high risk’ 

local economies as those with a predicted risk (i.e., with a forecasted number of 

workplace deaths) above the 90th percentile of the distribution, and ‘low risk’ as 

with all other LLMs. Based on this classification, Table 5 presents a descriptive 

analysis of the systematic differences between high-risk and low-risk LLMs. 

High-risk LLMs have different economic structures, with a significantly greater 

share of agricultural and construction workers and a lower share of manufacturing 

employment. The latter result is somewhat unexpected, on the basis of our 

previous discussion that the highest share of on-the-job deaths occurs in the 

industry and services sectors (cf. Table 1). High-risk areas also exhibit greater 

entrepreneurial density, with approximately 44 more plants per 1,000 inhabitants. 

While employment rates appear comparable (differing by only 1.66 percentage 

points and not statistically significant at conventional levels), high-risk LLMs 

show significantly lower unemployment rates by approximately 1.89 percentage 

points. Local economies identified as hotspots also present a significantly younger 

population and a lower share of foreigners. Notably, we find no significant 

differences in terms of income per capita, geographical distribution (South and 

Islands), or income inequality as measured by the Gini index, suggesting that our 

risk classification is not merely capturing well-known North‒South disparities or 

income-related differences. 

This evidence complements insights from the SHAP values and corroborates the 

notion that, while typically unexplored, territorial data retain significant 

predictive potential for the phenomena under scrutiny. Nonetheless, this 

exploratory analysis of high-risk areas is notably constrained by the lack of data 

at a higher resolution, which hinders the ability to identify drivers and 

characterize areas with granular detail. This limitation stems from the data itself 
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rather than the methodology employed, and it could be addressed by replicating 

the forecasting and descriptive analyses using more detailed and comprehensive 

datasets. 

Table 5: Differences in LLM characteristics by risk classification 

Variables    High-risk LLMs Other LLMs Difference p-value 

% workers in agriculture 0.210 0.104 0.107 
(0.014) 

0.000 

% workers in construction 0.119 0.108 0.010 
(0.005) 

0.042 

% workers in manufacture 0.122 0.209 -0.087 
(0.017) 

0.000 

Plants per 1,000 inhabitants 159.059 114.769 44.290 
(3.070) 

0.000 

Income per capita (€) 14,315.490 14,569.692 -254.202 
(516.972) 

0.623 

Unemployment rate 6.966 8.855 -1.889 
(0.620) 

0.002 

Employment rate 45.391 43.731 1.660 
(1.078) 

0.124 

% population over 65 0.274 0.252 0.022 
(0.004) 

0.000 

% foreigners 0.053 0.073 -0.019 
(0.005) 

0.000 

Share of LLMs in Southern 
regions 

0.475 0.457 0.018 
(0.067) 

0.787 

Gini index 0.394 0.394 0.000 
(0.004) 

0.955 

Notes: This table reports the mean values and the differences in LLM characteristics between high-risk LLMs and other 

LLMs. The last column reports p-values from two-sided t-tests of equality of means. 

4.2 ML risk map vs. current policy rules 

After demonstrating that our ML forecasting approach yields accurate estimates 

of workplace deaths and insights into the key characteristics of areas at highest 

risk, we now turn to an analysis of public policy targeting and resource allocation 

criteria. We exploit our estimates to create a granular risk map for 2023 that 

reports the forecasted number of deaths per 100,000 inhabitants20, and compare 

it with the current allocation and geographic distribution of work inspections and 

public subsidies for workplace safety. In particular, the questions we address with 

 
20 We have chosen to use the number of inhabitants as the denominator instead of the number of workers 
due to the geographically heterogeneous presence of informal work in Italy. Anyway, we also replicate the 
same analysis per 100,000 workers (see below). 
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this comparison are as follows: i) is public effort concentrated in the areas where 

it is most needed? ii) can the ML risk map be employed to refine the targeting of 

these policies? As the data concerning inspections and public subsidies are 

available only at the provincial level, we have re-run the main forecasting analysis 

using provincial-level data, as aggregating data from LLMs to provinces without 

imputation is not feasible, given that many LLMs span territories across two or 

more provinces. The performance of the ML forecasting pipeline for provincial 

data aligns with that reported for LLM data and is reported in Table A.8 in 

Supplemental Appendix A. 

Figure 3 below provides the answers to these questions. Specifically, the 

map compares the risk map computed as the forecasted on-the-job death rates 

per 100,000 inhabitants with the number of inspections per 100,000 inhabitants 

and the amount of public subsidies per 100,000 inhabitants for the year 2023.21 

Visually, the risk map indicates greater risk in the North, while inspections appear 

more concentrated in the South, and public funds are predominantly allocated to 

the central regions. This misalignment between public efforts and the risk map is 

confirmed by the weak correlation of the risk map with the number of inspections 

per 100,000 inhabitants (+0.2271) and the amount of public subsidies per 100,000 

inhabitants (+0.1708). The weak correlation with the amount of public subsidies 

is not surprising: indeed, their assignment mechanism does not take into account 

the past number of workplace injuries and deaths; rather, it is based on other 

requirements, such as company size and the type of proposed project. If we 

normalize with respect to the number of workers instead of inhabitants (see Figure 

A.6 in Supplemental Appendix A), the correlation strengthens (the correlation 

between the risk map and the number of inspections per 100,000 workers is 

+0.4919, whereas the correlation between the risk map and the amount of public 

 
21 We emphasize that the risk map is intended to be available to policymakers in advance; therefore, data 
on observed deaths contemporaneous to the policy data cannot be used to build it. While other methods, 
such as the naïve forecaster, could be employed, our ML methods have been shown to produce much more 
accurate and reliable risk estimates. 
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subsidies per 100,000 workers is +0.2778). We note that normalizing by the 

number of workers is not a sensible choice given the heterogeneous prevalence of 

the shadow economy and informal work in the country, hinted at by the mismatch 

between the number of deaths and injuries in the comparison reported in Figure 

A.1, which is also the main reason for our focus on fatalities, as discussed. Even 

setting aside this caveat, a significant misalignment persists between the risk map 

and public resources for workplace safety. In addition, these findings are 

independent of the ML algorithm selected, as demonstrated by Tables A.9 and 

A.10 in Supplemental Appendix A. These tables show that the risk maps produced 

by other ML algorithms strongly align with the one presented here, and the 

correlations are almost identical, irrespective of the algorithm used. In addition, 

Table A.10 complements Table A.7, which reports forecasting performances for 

the alternative year 2022 by showing the correlations between risk maps and 

public resources for 2022 as well. While the values are slightly higher than those 

for 2023, they still suggest that there is substantial room for refining the targeting 

of these measures and that the core findings are not driven by the choice of a 

particularly ‘lucky’ year in terms of forecasting performance or an ‘unlucky’ year 

for resource allocation. 

By comparing the maps, we can conclude that the targeting of current 

policies is misaligned with the actual risk in the territory. Can this misaligned 

targeting also affect the effectiveness of policies aimed at increasing occupational 

health and safety? In the next subsection, we answer this question by examining 

the results of the ex-post analysis of the increase in the number of inspections and 

the amount of public subsidies per 100,000 inhabitants between 2019 and 2023 on 

the change in the number of workplace deaths per 100,000 inhabitants. 
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Figure 3: Comparison of the risk map and public efforts at the provincial level in 

2023, normalized per 100,000 inhabitants 

 

Notes: We lack data on 12 provinces for the inspections, as the INL covers the whole Italian territory with 

the exception of two three special-status regions: Aosta Valley (1 province), Sicily (9 provinces) and 

Trentino-South Tyrol (2 provinces). Each variable is segmented into four classes (quartiles). The forecasted 

on-the-job death rates per 100,000 inhabitants for 2023 exhibit a positive but weak correlation with the 

number of inspections per 100,000 inhabitants (+0.2271) and the amount of public subsidies per 100,000 

inhabitants (+0.1708). 

4.3 Effects of public policies on workplace safety 

Finally, we move from the ex-ante targeting analysis to the ex-post policy 

evaluation. We start by providing counterfactual estimates for the effect of on-

site inspections, and then summarize the results on the impact of public subsidies, 

which are presented in Supplemental Appendix C. For both analyses, we include, 

among the set of confounders, all the variables identified as structurally different 

between high-risk areas and other areas in the descriptive statistics provided at 

the end of the forecasting analysis (cf. Table 5). Tables 6 and 7 below report the 

results of the ex-post analysis described in subsection 3.2.1 for the effect of on-

site inspections. Table 6 presents the main analysis, where we consider all 

provinces that experienced an increase in on-site inspections between 2018–2019 

and 2022–2023 as treated. Table 7 connects the counterfactual analysis with the 

previous risk forecasting analysis by focusing on a heterogeneity analysis, which 

examines the impact on provinces that experienced an increase in inspections and 

belong to the highest risk decile according to the best-performing algorithm 

(LASSO) from the independent ML forecasting analysis run at the province level. 
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Table 6: Impact of an increase in inspections on workplace fatalities 

 ATE estimate  Standard error      Lower CI     Upper CI 

OLS -0.238 0.279 -0.785 0.309 

Lasso -0.037 0.254 -0.535 0.461 

Ridge -0.057 0.267 -0.578 0.464 

Elastic net -0.039 0.254 -0.536 0.459 

Random forest -0.046 0.280 -0.596 0.503 

Boosting -0.027 0.266 -0.548 0.494 

Neural 

networks 
-0.120 0.275 -0.658 0.419 

Notes: The table shows the province-level impact of an increase in the number of inspections between 2018-2019 and 

2022-2023 per 100,000 inhabitants on the change in the number of workplace fatalities per 100,000 inhabitants between 

2019 and 2023. All provinces experiencing such an increase are considered treated. Treatment and outcome regressions 

for debiasing include the change in the lagged values (2018-2022) of the set of confounders described in Table A.4 in 

Supplemental Appendix A. The number of observations is 95. Except for LASSO, Ridge, and Elastic Net, for which 

cross-validation is performed, all other models use default values for the tuning hyperparameters. Cross-fitting with 5 

folds was employed for all models except OLS. 

 

Table 7: Impact of an increase in inspections on workplace fatalities                                

in high-risk areas 

            ATE estimate    Standard error   Lower CI   Upper CI 

OLS -1.874*** 0.725 -3.295 -0.453 

Lasso -1.733** 0.719 -3.142 -0.325 

Ridge -1.541** 0.709 -2.931 -0.151 

Elastic net -1.733** 0.719 -3.142 -0.325 

Random forest -2.267*** 0.741 -3.719 -0.814 

Boosting -1.64** 0.728 -3.064 -0.211 

Neural networks -2.010*** 0.684 -3.350 -0.669 

Notes: The table shows the province-level impact of an increase in the number of inspections between 2018-2019 and 

2022-2023 per 100,000 inhabitants on the change in the number of workplace fatalities per 100,000 inhabitants between 

2019 and 2023 in areas classified as ‘high-risk’, i.e., in the highest decile of the probabilistic risk distribution for 2023, 

according to the best-performing algorithm (LASSO) of the independent ML forecasting analysis run at the province 

level. Only these provinces are considered treated. Treatment and outcome regressions for debiasing include the change 

in the lagged values (2018-2022) of the set of confounders described in Table A.4 in Supplemental Appendix A. The 

number of observations is 95. Except for LASSO, Ridge, and Elastic Net, for which cross-validation is performed, all 

other models use default values for the tuning hyperparameters. Cross-fitting with 5 folds was employed for all models 

except OLS. Stars denote statistical significance: * p < 0.10, ** p < 0.05, *** p < 0.01. 

By comparing the treatment effect estimates of the two tables, all the 

different algorithms employed to orthogonalize the treatment and the outcome 

support the same qualitative story: the overall impact of the increase in 

inspections registered in the five years of our sample on workplace deaths is 

negative but negligible and statistically insignificant. In contrast, this impact is 
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negative, sizable, and statistically significant for high-risk areas, ranging from a 

reduction in the number of deaths per 100,000 inhabitants from -1.464 for boosting 

to -2.267 for random forest. 

Tables C.1 and C.2 in Supplemental Appendix C report the corresponding 

estimates for the effect of the increase in public subsidies for occupational safety 

and health. Qualitatively, the results are consistent and suggest that, in terms of 

impact magnitude, an increase in public subsidies generally exerts a greater 

negative effect in areas flagged as high-risk by machine forecasts. From a 

statistical significance perspective, the results are more nuanced. Although the 

reduction is small, it is significant for two models (OLS and neural networks) in 

the baseline estimates. In contrast, although the impact is much greater in high-

risk areas experiencing an increase in subsidies, it is significant only for OLS, 

Ridge, and random forest. This is mainly because the coefficients are more noisily 

estimated than they are in the inspection analysis, and the standard errors are 

larger, with confidence intervals covering zero for most estimates. 

In conclusion, while changes in these policy measures have, on average, 

been mostly ineffective in reducing fatalities, they can produce significant 

reductions in workplace deaths when implemented mainly in areas that are more 

vulnerable to the phenomenon. This treatment effect heterogeneity, depending on 

the ML-predicted risk levels, underscores the place-sensitive nature of workplace 

safety policies. The implications of this analysis are twofold: i) focusing on average 

effects when there is imperfect targeting can be misleading and lead to the 

dismissal of effective policies; ii) the apparent lack of broader impacts is most 

likely due to inadequate targeting and the misallocation of policy interventions 

(cf. Figure 3) in the territory. Our results suggest that shifting focus and 

concentrating policy efforts in red-flag areas identified by machine forecasts could 

boost the real-world impacts of these interventions. In more detail, a back-of-the-

envelope calculation based on the most conservative estimate for the inspection 

analysis (boosting) suggests that counterfactually increasing the number of on-
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site inspections by 100 in all areas flagged as high-risk by our ex-ante machine 

forecasts, but not in other areas not classified as high-risk, might prevent a total 

of 86 workplace fatalities per year, or about 10% of the average annual on-the-job 

deaths registered during the years included in the analysis.22 This reduction, in 

turn, would substantially help Italian policymakers reach the EU Vision Zero 

target as well as their stated goal of reducing the total number of workplace 

deaths (INAIL, 2022). In economic terms, directing this increase in policy only to 

provinces in the highest risk decile distribution (or another cutoff chosen by the 

regulator) would mean that the cost of these additional inspections in high-risk 

areas would be more than counterbalanced by reducing ineffective inspections in 

less risky areas. By focusing resources on areas flagged as high-risk, the overall 

cost-effectiveness of the policy would be enhanced.23 

Importantly, the above considerations pertain solely to one of the potential 

objectives of the two policies—among other interventions in occupational safety 

and health—that we examine: the reduction of on-the-job fatalities. On-site 

inspections and public subsidies might also be implemented to achieve other goals 

that we do not consider. This relates to the issue of the so-called ‘omitted payoffs’ 

(Kleinberg et al., 2018) that the policymaker might be trying to achieve, which 

could explain the limited overlap of the allocation of inspections and public 

subsidies with our risk map, as well as the overall ineffectiveness in reducing 

 
22 This calculation is inevitably the result of an approximate estimate and should therefore be treated with 

caution. First, we convert to absolute terms the average change in inspections per 100,000 inhabitants in 

high-risk areas, resulting in a total of 36.48 more inspections in these areas over the period considered. Next, 

we also convert the most conservative estimate (boosting), which is expressed as the reduction in on-the-job 

deaths per 100,000 inhabitants yielding a reduction of 3.94 deaths associated with the increase in inspections. 

We then multiply this number by the absolute increase in inspections to obtain the total number of deaths 

(31.52) associated with 36.48 more inspections, assuming such an increase occurs in all high-risk areas. 

Finally, we derive from this estimate the total number of deaths avoided by conducting 100 additional 

inspections, instead of 36.48 more, in each high-risk area. 

23 However, since this conclusion is drawn from aggregate data, the ecological fallacy cautions that it might not 

hold true for individual plants within high-risk areas. 
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workplace deaths. Therefore, we stress that our judgment of the policies pertains 

solely to workplace deaths. Nevertheless, among the possible goals of these 

policies, the one we study is arguably one of the most important goals pursued by 

the regulator.  

Overall, although this ex-post analysis comes with caveats associated with 

the estimation of causal effects due to the strong unconfoundedness assumption, 

we believe that, when coupled with the previous ML risk comparison, it makes a 

strong case for revising the targeting mechanisms of these policy measures. 

5. Discussion and conclusion 

Despite government agencies spending billions each year on workplace 

safety inspections (Johnson et al., 2023), fatal workplace accidents continue to 

pose a significant policy challenge across both developing and developed countries 

(ILO, 2023). Thus, devising new solutions, revising current allocation criteria, and 

framing alternative strategies are necessary to guide and complement existing 

measures. Using Italy as a case study, we demonstrated that coupling AI-powered 

risk assessment with a place-based approach explicitly centered on granular 

workplace death data can accurately forecast areas most at risk. This can also 

inform and target policy interventions on occupational health and safety in the 

territory, such as the local deployment of work inspections, which are currently 

misaligned with the actual distribution of risk and are not as effective as they 

could be if they specifically targeted areas at highest risk. The implication of this 

mismatch is that our AI-powered territorial targeting approach can reduce the 

incidence of this chronic issue while lowering the costs of policy 

implementation.Importantly, our conclusions rest on key caveats concerning the 

partial scope of our policy data (cf. Section 3.1.3) and the acknowledgment that 

the Italian policy framework for occupational safety and health encompasses more 

than the aspects analyzed in this study. Nonetheless, we believe our findings 

represent a significant initial step towards fostering a more data-driven, 
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quantitative, and ultimately effective approach to policy discussion and 

implementation on these critical issues.In Italy, the topic is currently under 

intense political discussion in the country due to the Italian Legislative Decree 

103/2024, which was effective as of July 12, 2024 and introduced significant 

reforms aimed at simplifying administrative controls on businesses. The decree 

redefines the framework for inspections concerning labor, safety, and health and 

streamlines how public administrations regulate economic activities. It reduces 

bureaucratic burdens on businesses while preserving essential oversight of safety 

and compliance. Within such a regulatory framework, it is possible to envision 

that the ML tools we developed in this paper could be employed to guide the 

implementation of the new rules at the local level and avoid misalignment in 

targeting, which, as we have shown, has characterized previous policy efforts, 

damaging their effectiveness. We are aware that translating predictions into 

policies comes with non-trivial issues concerning the transparency and 

interpretability of the measures implemented by the regulator (Athey, 2017). 

However, we believe that the latest advancements in the fields of Interpretable 

Machine Learning and Explainable AI (Lundberg & Lee, 2017; Lundberg et al., 

2020; Molnar, 2020) can effectively address most of these concerns by opening the 

black box of machine predictions and making their fundamentals accessible and 

understandable to non-experts and policymakers. 

Replacing current rules with those based on machine learning forecasts in 

hotspot areas might elicit behavioral changes in less inspected or less subsidized 

areas not at high risk, triggered by the lack of deterrence effects and unobservable 

in our historical data covering periods with old criteria. We deem this possibility, 

related to the so-called Lucas critique (Lucas, 1976), unrealistic. This has already 

been shown to be very unlikely for non-fatal injuries at the plant level (Johnson 

et al., 2023). Within our place-based approach, this hypothesis seems even more 

remote, as the distribution of risk is more likely driven by economic factors, such 

as the heterogeneous structural characteristics of local economies and the 
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prevalence of the shadow economy, rather than by variations in behavioral 

patterns or inspection frequencies across different areas. In any case, the Lucas 

critique applies only to a budget-constrained scenario where the regulator can 

allocate only a fixed number of inspections or amounts of subsidies, and cost 

trade-offs exist. It does not pertain to scenarios where ML rules are employed to 

allocate additional resources to high-risk areas only without reducing pre-existing 

public efforts in less risky areas. Furthermore, our approach is intended to be 

based on dynamic learning and subject to continuous monitoring and updating so 

that any changing pattern in the risk distribution across areas can be promptly 

incorporated into the ML forecasting models and the targeting rules can be 

updated accordingly, thus preventing any significant risk spillover to less 

inspected areas. 

The rationale for the place-based approach we advocate and the reason for 

the accuracy of the ML forecasts are rooted in the systematic territorial patterns 

associated with the phenomenon, which have thus far been largely ignored by the 

literature despite the growing sectorial specialization and clustering of local 

economies. The focus on deaths rather than injuries is also an important element 

that enhances the reliability of the forecasts we produced, as it minimizes the 

complex issues involving predictive tasks with imperfect labels (Cannings et al., 

2020). These issues arise when injury data affected by underreporting are used, a 

particularly thorny problem in contexts such as Italy, with a high and clustered 

prevalence of the shadow economy. 

Regarding potential future developments, several additional avenues 

warrant exploration. For instance, access to microdata on workplace fatality 

occurrences at the firm and plant level would enable extending the forecasting 

and targeting approach proposed in this paper to achieve substantially higher 
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resolution.24 Additionally, overcoming the limitations of the inspection data at 

our disposal—such as the inability to disaggregate the number of inspections by 

NACE-2 digit sectors or across other dimensions and categories (e.g., detailed 

data on the number of inspectors at the local level, as well as the capacity and 

characteristics of territorial inspection units)—would enable the conduct of 

heterogeneity analyses by both sector and region. Such analyses could assess both 

the adequacy of targeting rules and the effectiveness of these policies, which we 

were unable to explore in this work. Finally, having access to data on other 

policies that indirectly address occupational safety and health in Italy would allow 

evaluating targeting mechanisms and causal effects of these additional policies.. 

In turn, this would offer a more comprehensive understanding of the state of the 

Italian policy framework on this critical issue and enhance the external validity 

of our findings. 

The general estimation model underlying the forecasting pipeline of Table 

2 is the one reported in Equation 1: 

�	,
  = �(�	,
−1, �	,
−2, �	,
−1, �	,
−2) + 	,
            (1) 

This forecasting model aims to predict the number of workplace fatalities 

Y in LLM i and year t, where the outcome is assumed to be a function of highly 

predictive Y outcome lags and lagged covariates � from the previous two years.25 

We remain agnostic regarding the data-generating process and flexibly allow for 

possibly arbitrary complexity of the function f to be addressed via a range of ML 

algorithms characterized by varying degrees of complexity. 

In conclusion, our findings can be leveraged to optimize public efforts and 

more effectively address an issue that is a primary target of occupational safety 

 
24 A promising extension at the micro level would involve examining an alternative outcome—

specifically, the number of fatalities normalized by the number of hours worked—which would 

provide a more precise definition of the outcome variable. 

 
25 Where the set of predictors includes only those selected at the end of step 2 in Table 2. 
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and health regulation and yet remains challenging to address. More generally, our 

place-based approach could be applied to other important issues, such as gender 

violence, suicides, and gambling addiction, for which the policy payoffs of 

combining algorithmic tools with increasingly rich and granular data to fine-tune 

targeting and pinpoint drivers of these complex phenomena might also be 

considerable. 
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Supplemental Appendix A – Descriptive statistics and robustness analyses 

 

Table A.1: Yearly number of on-the-job deaths in Italy for 2020 and 2021 – imputed and 

actual values 

 2020 actual 2020 imputed  2021 actual 2021 imputed 

Industry and Services 1,298 802  979 766 

Agriculture 120 131  127 141 

Public Sector 74 15  49 12 

Total 1,492 948  1,155 919 

Notes: We have not imputed the number of “in itinere” deaths for 2020 and 2021, as the reduction is quite homogeneous across 

the country and therefore does not pose a significant threat to the territorial analysis. 
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Table A.2: Variable details for the targeting analysis 

Dependent variable  Source 

Number of on-the-job workplace deaths  INAIL 

   

Predictors Lags Source 

Economic classification dummies (e.g., highly 

specialized urban LLMs, multi-specialized 

urban LLMs, touristic LLMs, agri-food LLMs) 

Time-invariant (17 dummies) Istat 

Geographical dummies (North‒East, North‒

West, Centre and South) 
Time-invariant (4 dummies) Istat 

Population dummies: ≤ 10,000 inhabitants; 

(10,000; 50,000]; (50,000; 100,000]; (100,000; 

500,000]; >500,000 inhabitants 

Time-invariant (5 dummies) Istat 

Share of population located in municipalities 

considered as peripheral or ultra-peripheral 

according to the SNAI classification 

Time-invariant Istat 

LLM considered as rural Time-invariant (1 dummy) Istat 

LLM with at least one industrial district Time-invariant (1 dummy) Istat 

Average price per square meter (house and 

villa separately) 
1 lag + 1 lag of the difference 

Osservatorio del Mercato 

Immobiliare – Agenzia delle 

Entrate 

Average age of the mayors 1 lag + 1 lag of the difference Ministry of the Interior 

% of mayors with a university degree 1 lag + 1 lag of the difference Ministry of the Interior 

% of female mayors 1 lag + 1 lag of the difference Ministry of the Interior 

Number of voters at the European elections 1 lag + 1 lag of the difference Ministry of the Interior 

Turnout at the European elections 1 lag + 1 lag of the difference Ministry of the Interior 

Gender gap in turnout at the European 

elections 
1 lag + 1 lag of the difference Ministry of the Interior 

Income per capita 1 lag + 1 lag of the difference 
Ministry of Economy and Finance 

(MEF) 

Overall declared income 1 lag + 1 lag of the difference MEF 

Declared income - employed 1 lag + 1 lag of the difference MEF 

Declared income - entrepreneurs 1 lag + 1 lag of the difference MEF 

Declared income - self-employed 1 lag + 1 lag of the difference MEF 

Declared income - retirees 1 lag + 1 lag of the difference MEF 

Declared income - equities 1 lag + 1 lag of the difference MEF 

Declared income – lands and buildings 1 lag + 1 lag of the difference MEF 

Municipal personal income surcharge revenues 1 lag + 1 lag of the difference MEF 

Regional personal income surcharge revenues 1 lag + 1 lag of the difference MEF 

Gini index 1 lag + 1 lag of the difference MEF 

Unemployment rate 1 lag + 1 lag of the difference Istat 

Employment rate 1 lag + 1 lag of the difference Istat 

Population 1 lag + 1 lag of the difference Istat 

Population - foreigners 1 lag + 1 lag of the difference Istat 

Population - 65+ years old 1 lag + 1 lag of the difference Istat 

Number of newborns 1 lag + 1 lag of the difference Istat 

Number of newborns per 1,000 inhabitants 1 lag + 1 lag of the difference Istat 

Number of plants 1 lag + 1 lag of the difference Infocamere 
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Number of plants in agriculture 1 lag + 1 lag of the difference Infocamere 

Number of plants in manufacturing 1 lag + 1 lag of the difference Infocamere 

Number of plants in the construction sector 1 lag + 1 lag of the difference Infocamere 

Number of plants per 1,000 inhabitants 1 lag + 1 lag of the difference Infocamere 

Number of employees 1 lag + 1 lag of the difference Infocamere 

Number of employees in agriculture 1 lag + 1 lag of the difference Infocamere 

Number of employees in manufacturing 1 lag + 1 lag of the difference Infocamere 

Number of employees in the construction 

sector 
1 lag + 1 lag of the difference Infocamere 

Number of employees per 1,000 inhabitants 1 lag + 1 lag of the difference Infocamere 

Average number of employees per plant 1 lag + 1 lag of the difference Infocamere 

Share of workers in agriculture 1 lag + 1 lag of the difference Infocamere 

Share of workers in manufacturing 1 lag + 1 lag of the difference Infocamere 

Share of workers in the construction sector 1 lag + 1 lag of the difference Infocamere 

Number of on-the-job workplace deaths 1 lag + 1 lag of the difference INAIL 

Number of on-the-job workplace deaths -

agriculture 
1 lag + 1 lag of the difference INAIL 

Number of on-the-job workplace deaths – 

industry and services 
1 lag + 1 lag of the difference INAIL 

Number of on-the-job workplace deaths – 

public sector 
1 lag + 1 lag of the difference INAIL 

Number of on-the-job workplace deaths – 

women 
1 lag + 1 lag of the difference INAIL 

Number of in-itinere workplace deaths 1 lag + 1 lag of the difference INAIL 

Number of in-itinere workplace deaths - 
agriculture 

1 lag + 1 lag of the difference INAIL 

Number of in-itinere workplace deaths – 

industry and services 
1 lag + 1 lag of the difference INAIL 

Number of in-itinere workplace deaths – public 
sector 

1 lag + 1 lag of the difference INAIL 

Number of in-itinere workplace deaths – 

women 
1 lag + 1 lag of the difference INAIL 

Notes: All variables have been collected at the LLM level. All time-varying variables are available for all years between 2017 and 2023. 
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Table A.3: Descriptive statistics for the targeting analysis 

Variable Mean Std Dev 

Rural LLM (%) 82.30 38.18 

LLM with an industrial district (%) 23.11 42.16 

Population 97,432.78 268,652.60 

Number of in-itinere workplace deaths 0.52 1.50 

Number of in-itinere workplace deaths - agriculture 0.01 0.10 

Number of in-itinere workplace deaths – public sector 0.02 0.16 

Number of in-itinere workplace deaths – industry and serv. 0.46 1.40 

Number of in-itinere workplace deaths - women 0.08 0.33 

Number of on-the-job workplace deaths 1.49 3.44 

Number of on-the-job workplace deaths - agriculture 0.23 0.60 

Number of on-the-job workplace deaths – public sector 0.02 0.16 

Number of on-the-job workplace deaths – industry and serv. 1.25 3.25 

Number of on-the-job workplace deaths - women 0.10 0.38 

Average price per square meter – house (€) 1,064.98 628.64 

Average price per square meter – villa (€) 1,265.59 723.59 

Average age of the mayors 52.74 4.59 

Female mayors (%) 12.67 13.67 

Mayors with a university degree (%) 49.66 23.01 

Turnout at the European elections (%) 54.79 13.27 

Gender gap in turnout at the European elections (pps) 4.35 2.29 

Number of employees 31,049.20 104,533.70 

Number of employees per 1,000 inhabitants 286.55 89.65 

Number of plants 10,407.96 28,696.79 

Number of plants per 1,000 inhabitants 116.89 25.20 

Workers in agriculture (%) 11.84 10.95 

Workers in manufacturing (%) 20.25 12.66 

Workers in the construction sector (%) 10.31 3.47 

Population with 65 or more years (%) 24.65 3.30 

Foreigners (%) 6.95 3.69 

Number of newborns 687.32 1991.36 

Number of newborns per 1,000 inhabitants 6.73 1.30 

Income per capita (€) 13,191.67 3,598.02 

Employment rate (%) 42.88 8.21 

Unemployment rate (%) 10.69 5.76 

   

N 610 

T 7 

N∙T 4,270 
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Table A.4: Variable details for the ex-post analysis 

Dependent variable Source 

Number of on-the-job workplace deaths INAIL 

  

Covariates Source 

Number of on-site work inspections INL 

Public subsidies for occupational safety and health INAIL 

Average price per square meter (house and villa separately) 
Osservatorio del Mercato 

Immobiliare – Agenzia delle Entrate 

Average age of the mayors Ministry of the Interior 

% of mayors with a university degree Ministry of the Interior 

% of female mayors Ministry of the Interior 

Turnout at the European elections Ministry of the Interior 

Gender gap in turnout at the European elections Ministry of the Interior 

Income per capita 
Ministry of Economy 

and Finance 

Unemployment rate Istat 

Population Istat 

% of foreigners Istat 

% of 65+ years old Istat 

% of males Istat 

Number of newborns per 1,000 inhabitants Istat 

Number of deaths per 1,000 inhabitants Istat 

Number of employees per 1,000 inhabitants Infocamere 

Number of plants per 1,000 inhabitants Infocamere 

Average number of employees per plant Infocamere 

Share of workers in agriculture Infocamere 

Share of workers in manufacturing Infocamere 

Share of workers in the construction sector Infocamere 

The Quality of Life Index and its six thematic pillars: i) wealth and 

consumption; ii) business and employment; iii) environment and services; iv) 

demography, society, and health; v) justice and security; vi) culture and leisure 

time 

Il Sole 24 Ore 

Notes: All variables have been collected at the provincial level. Each year, the Quality of Life Index gauges well-being across Italian 

provinces on the basis of a comprehensive analysis of various socio-economic indicators. See this link for more details: 

https://lab24.ilsole24ore.com/qualita-della-vita/ (in Italian). 
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Table A.5: Descriptive statistics for the ex-post analysis 

Variable Mean Std Dev 

Population 562,296 631,991 

Number of on-the-job workplace deaths 8.63 8.72 

Number of on-site work inspections 203.97 166.39 

Public subsidies for occupational safety and health (€) 2,345,228 2,285,465 

Average price per square meter – house (€) 1,044 360 

Average price per square meter – villa (€) 1,241 445 

Average age of the mayors 52.71 2.32 

Mayors with a university degree (%) 47.58 11.05 

Female mayors (%) 15.49 8.31 

Turnout at the European elections (%) 58.96 9.57 

Gender gap in turnout at the European elections (pps) 3.81 1.70 

Number of employees per 1,000 inhabitants 312.10 64.01 

Number of plants per 1,000 inhabitants 109.66 13.34 

Average number of employees per plant 2.87 0.62 

Workers in agriculture (%) 6.81 5.16 

Workers in manufacturing (%) 22.50 9.29 

Workers in the construction sector (%) 9.30 1.76 

Population with 65 or more years (%) 24.58 2.35 

Male population (%) 48.84 0.47 

Foreigners (%) 8.35 3.39 

Number of newborns per 1,000 inhabitants 6.60 0.81 

Number of deaths per 1,000 inhabitants 11.86 1.72 

Income per capita (€) 15,097 3,197 

Unemployment rate 9.16 3.88 

Quality of Life Index - Overall 495.11 52.56 

Quality of Life Index - Wealth and consumption 489.39 103.86 

Quality of Life Index - Business and employment 479.19 69.59 

Quality of Life Index - Environment and services 515.57 92.66 

Quality of Life Index - Demography, society, and health 594.88 95.69 

Quality of Life Index - Justice and security 511.99 211.33 

Quality of Life Index - Culture and leisure time 379.62 92.34 

   

N 95 

Notes: All variables have been analyzed at the provincial level. We consider the value of each variable in the years used in the 

empirical analysis, i.e., 2018, 2019, 2022 and 2023.  
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Table A.6: Performance by population size 

 
Small LLMs (<= 

50,000 inh.) 

Medium-sized LLMs 

(50,000; 200,000] inh. 

Large LLMs 

(>200,000 inh.) 
All LLMs 

LASSO 0.546 2.053 8.367 1.741 

PLS 0.510 2.030 8.148 1.694 

Random Forest 0.532 2.144 8.706 1.794 

Stochastic gradient 

boosting 
0.536 2.227 11.871 2.091 

Neural network 0.496 2.099 10.320 1.893 

Naïve 1.015 3.881 12.824 3.031 

     

N 340 219 51 610 

Notes: Each cell reports the MSFE for the best performing version of each ML algorithm. 
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Table A.7: Performance by number of predictors for 2022 

 
10 

variables 

20 

variables 

30 

variables 

ALL (160) 

variables 

Smallest 

MSFE 

LASSO 1.918 1.724 1.768 1.986 1.715 

PLS 2.026 1.939 1.936 2.019 1.936 

Random Forest 2.273 2.053 2.054 2.133 2.031 

Stochastic gradient 

boosting 
4.845 4.789 4.476 3.104 3.104 

Neural network 2.268 1.806 1.810 3.343 1.806 

Naïve                              2.561 

Notes: Each cell reports the MSFE for the best performing version of each ML algorithm. 
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Table A.8: Performance by number of predictors for 2023 – provincial data 

 
10 

variables 

20 

variables 

30 

variables 

ALL (138) 

variables 

Smallest 

MSFE 

LASSO 11.409 12.577 13.071 18.941 11.409 

PLS 11.830 13.326 13.797 15.529 11.830 

Random Forest 12.637 12.523 12.670 12.644 12.523 

Stochastic gradient 

boosting 
13.549 13.818 12.519 11.657 11.657 

Neural network 14.267 15.508 14.217 17.743 14.217 

Naïve                              18.794 

Notes: We report the parameters selected via the panel CV for the best performing case of each ML algorithm. For 

boosting, 1,500 trees were selected, 3 as the maximum depth of each tree, 10 as the minimum number of observations 

in terminal nodes and 0.01 for the learning rate. For LASSO, a penalty parameter equal to 0.9, 7 as the number of 

components (PLS), and 21 for the number of variables randomly sampled as candidates at each split (random forest) 

are used. In this analysis, we did not use the predictors only available at the LLM-level (e.g., the economic classification 

dummies). The neural network comprises two LSTM layers followed by a dense layer. The first LSTM layer has 500 

units and feeds into a second LSTM layer with 50 units. A dense layer with a single unit produces the final output, 

using ReLU activation throughout. 

 

 

  



54 

Table A.9: Correlations between estimates produced by the five ML algorithms                                    

and provincial data 

 LASSO PLS 
Random 

Forest 

Stochastic 

gradient 

boosting 

Neural 

network 

LASSO 1     

PLS 0.9913 1    

Random Forest 0.9889 0.9753 1   

Stochastic gradient 

boosting 
0.9682 0.9562 0.9683 1  

Neural network 0.9652 0.9441 0.9706 0.9476 1 

Notes: Each cell reports the MSFE for the best performing version of each ML algorithm. 
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Table A.10: Correlations between ML estimates and public resources 

Year 2023 

 The number of inspections The amount of public subsidies 

 Normalized per 100,000 inhabitants 

Risk map (LASSO) 0.2271 0.1708 

Risk map (PLS) 0.2860 0.1424 

Risk map (Random 

Forest) 
0.2981 0.0242 

Risk map (Stochastic 

gradient boosting) 
0.2182 0.0510 

Risk map (Neural 

network) 
0.3056 0.1760 

 Normalized per 100,000 workers 

Risk map (LASSO) 0.4919 0.2778 

Risk map (PLS) 0.5533 0.2568 

Risk map (Random 

Forest) 
0.5133 0.1359 

Risk map (Stochastic 

gradient boosting) 
0.4715 0.1627 

Risk map (Neural 

network) 
0.5276 0.2169 

 

Year 2022 

 The number of inspections The amount of public subsidies 

 Normalized per 100,000 inhabitants 

Risk map (LASSO) 0.4132 0.3188 

Risk map (PLS) 0.3819 0.3470 

Risk map (Random 

Forest) 
0.3719 0.0626 

Risk map (Stochastic 

gradient boosting) 
0.3615 0.1299 

Risk map (Neural 

network) 
0.3750 0.1447 

 Normalized per 100,000 workers 

Risk map (LASSO) 0.6323 0.3832 

Risk map (PLS) 0.6177 0.3961 

Risk map (Random 

Forest) 
0.6016 0.1789 

Risk map (Stochastic 

gradient boosting) 
0.5874 0.2589 

Risk map (Neural 

network) 
0.5981 0.2780 

    Notes: Each cell reports the MSFE for the best performing version of each ML algorithm. 
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Figure A.1: Number of on-the-job deaths and injuries in 2023, normalized per 100,000 

inhabitants and workers 

 

Notes: Data are at the LLM-level and refer to the year 2023.
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Figure A.2: Panel cross-validation 
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Figure A.3: Variable importance ranking – Preliminary random forest 

 
Notes: The figure shows the 20 most predictive covariates for the dependent variable “number of on-the-job deaths” on the 

basis of the preliminary random forest analysis conducted following the approach proposed by Athey and Wager (2019). 
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Figure A.4: SHAP values of the best performing model for forecasting on-the-job deaths in 

2023 

 

Notes: The best performing model is the PLS model with 20 variables and 9 components. This figure reports the SHAP 

values for the 10 most predictive variables based on the preliminary random forest analysis. 
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Figure A.5: Local surrogate model based on 2023 LLM-level forecasts with PLS 

 

Notes: The numbers in the terminal nodes refer to the predicted annual number of on-the-job deaths in 2023 for all LLMs 

falling within that node. The predictions are made by the best-performing PLS model. 
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Figure A.6: Comparison of the risk map and public efforts at the provincial level in 2023, 

normalized per 100,000 workers 

 

Notes: We lack data on 12 provinces for the inspections, as the INL covers the whole Italian territory with the exception 

of two three special-status regions: Aosta Valley (1 province), Sicily (9 provinces) and Trentino-South Tyrol (2 provinces). 

Each variable is segmented into four classes (quartiles). The forecasted on-the-job death rates per 100,000 workers for 2023 

exhibit a positive correlation with the number of inspections per 100,000 workers (+0.4919) and a weaker correlation with 

the amount of public subsidies per 100,000 workers (+0.2778). 
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Supplemental Appendix B – Testing estimate sensitivity to imputed workplace 

deaths in 2020 and 2021 

In this Appendix, we test the sensitivity of the estimates with respect to the imputation of 

the number of workplace deaths in 2020 and 2021 to account for the effects of COVID-19 

during those years, following the WHO approach (Knutson et al., 2023; Msemburi et al., 

2023). INAIL only provides the number of pandemic-related deaths at the national level (576 

in 2020, 276 in 2021, 8 in 2022, and 0 in 2023), necessitating an alternative strategy for 

imputation at the sub-national level. To address this, we leveraged the strong correlation 

(more than +0.70) between the “excess deaths” data due to COVID-19 provided by Cerqua 

et al. (2021) and the “excess” workplace deaths calculated as the difference from the reported 

number of on-the-job deaths in the post-COVID-19 years and those reported in 2019 at the 

LLM level, which is our unit of analysis (see below). The imputation process also considered 

sector-specific characteristics and gender composition. As in the WHO approach, these 

corrections were made only for the years impacted by the pandemic, namely, 2020 and 2021. 

Following this process, the average number of deaths per sector and gender remained 

relatively stable between 2017 and 2023. Table A.1 in Supplemental Appendix A presents 

the number of deaths by year and sector before and after the imputation. Importantly, in 

the empirical analysis, the years in which we validated our methodological approach were 

2022 and 2023 (see the Methodology section), years in which no imputation occurred. 

Moreover, the imputation exercise did not exploit data from 2022 or 2023 to avoid any 

possible data leakage, a serious challenge when applying ML to panel data (see Cerqua, Letta 

and Pinto, 2024).26  

To test the sensitivity of the estimates with respect to the imputation, we replicated 

the analysis using only one lag of the covariates on workplace deaths. Consequently, the final 

forecasts for 2023 rely exclusively on non-imputed data, as workplace deaths in 2022 were 

not imputed at all. The MSFE, reported in Table B.1, are very close to those reported in 

Table 3. The lack of worsening performance is not unexpected, as most predictors are the 

 
26 In addition, in the robustness section presented in Supplemental Appendix B, we will replicate the empirical analysis 
without using imputed data as predictors and demonstrate that the ML model can still provide highly forecasts more 
accurate than the benchmark approach. 
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same as the most predictive covariates selected by the preliminary random forest (see Figure 

A.2 in Supplemental Appendix A). 

We then repeated the analysis on the original INAIL data, i.e., without any 

imputation of workplace deaths. The MSFEs are reported in Table B.2 for each ML 

algorithm and the naïve estimator. We observe a sharp deterioration in the accuracy of the 

ML algorithms, which, under some circumstances, especially with respect to random forest, 

perform even worse than the naïve estimator. This is not unexpected, as all the ML 

algorithms were trained on “peculiar data” that do not accurately reflect the usual pattern 

of on-the-job workplace deaths. Notably, under these circumstances, the LASSO estimator 

generally performs better than the other ML algorithms do but only when 20 or 30 predictors 

are used. To understand why LASSO performs well with 20 predictors, we examined the 

coefficients of the final model and found that only 6 variables have a non-zero coefficient. 

None of these variables pertain to past data on workplace deaths. 

Overall, it is commonly recognized that in circumstances as unique as the COVID-19 

pandemic, data imputation is the preferred approach (Knutson et al., 2023; Msemburi et al., 

2023). However, it is also important to acknowledge that imputed data can result in a loss 

of information and potentially diminish the ability of ML algorithms to leverage all available 

information fully. If one could employ actual data on workplace deaths directly attributable 

to COVID-19, the imputation would become even more realistic, likely resulting in even 

more accurate forecasts.
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Table B.1: Performance with only 1 lag of on-the-job workplace death predictors 

 
10 

variables 

20 

variables 

30 

variables 

ALL (97) 

variables 

Smallest 

MSFE 

LASSO 1.744 1.746 1.712 1.780 1.712 

PLS 1.723 1.704 1.855 2.022 1.704 

Random Forest 1.800 1.802 1.835 1.835 1.800 

Stochastic gradient 

boosting 
2.299 2.216 1.821 2.015 1.821 

LSTMs 1.913 1.938 2.065 2.110 1.913 

Naïve                              3.031 

Notes: We report the parameters selected via the panel CV for the best performing case of each ML algorithm. 
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Table B.2: Performance using non-imputed on-the-job death data 

 
10 

variables 

20 

variables 

30 

variables 

ALL (131) 

variables 

Smallest 

MSFE 

LASSO 4.022 1.725 2.006 3.765 1.725 

PLS 50.831 3.766 13.707 2.350 2.350 

Random Forest 8.576 5.020 4.867 7.992 4.867 

Stochastic gradient 

boosting 
4.239 2.998 3.357 2.900 2.900 

LSTMs 2.072 4.299 4.098 3.760 2.072 

Naïve                              3.031 

Notes: We report the parameters selected via the panel CV for the best performing case of each ML algorithm. 
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Supplemental Appendix C – The effect of public subsidies 

 

Table C.1: Impact of an increase in public subsidies for occupational safety and health                   

on workplace fatalities 

    ATE estimate   Standard error        Lower CI     Upper CI 

OLS -0.504* 0.287 -1.067 0.059 

Lasso -0.348 0.254 -0.846 0.149 

Ridge -0.217 0.251 -0.708 0.274 

Elastic net -0.349 0.254 -0.847 0.149 

Random forest -0.236 0.264 -0.754 0.281 

Boosting -0.366 0.259 -0.875 0.143 

Neural networks -0.534** 0.249 -1.023             -0.046 

Notes: The table shows the province-level impact of an increase in the absolute amount of public subsidies for occupational 

safety and health received by a given province between 2018-2019 and 2022-2023 on the change in the number of workplace 

fatalities per 100,000 inhabitants between 2019 and 2023. All provinces experiencing such an increase are considered 

treated. Treatment and outcome regressions for debiasing include the change in the lagged values (2018-2022) of the set 

of confounders described in Table A.4 in Supplemental Appendix A. The number of observations is 95. Except for LASSO, 

Ridge, and Elastic Net, for which cross-validation is performed, all other models use default values for the tuning 

hyperparameters. Cross-fitting with 5 folds was employed for all models except OLS. 
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Table C.2: Impact of an increase in public subsidies for occupational safety and health                   

on workplace fatalities in high-risk areas 

   ATE estimate   Standard error  Lower CI   Upper CI 

OLS    -2.216*** 0.797 -3.778 -0.655 

Lasso -0.934 0.742 -2.388 0.520 

Ridge   -1.657** 0.734 -3.095 -0.219 

Elastic net -0.934 0.742 -2.388 0.520 

Random forest  -1.345* 0.775 -2.862 0.174 

Boosting -0.878 0.756 -2.360 0.604 

Neural networks -0.960 0.692 -2.315 0.396 

Notes: The table shows an increase in the absolute amount of public subsidies for occupational safety and health received on the change 

in the number of workplace fatalities per 100,000 inhabitants between 2019 and 2023 in areas classified as ‘high-risk’, i.e., in the highest 

decile of the probabilistic risk distribution for 2023, according to the best-performing algorithm (LASSO) of the independent ML 

forecasting analysis run at the province level. Only these provinces are considered treated. Treatment and outcome regressions for 

debiasing include the change in the lagged values (2018-2022) of the set of confounders described in Table A.4 in Supplemental Appendix 

A. The number of observations is 95. Except for LASSO, Ridge, and Elastic Net, for which cross-validation is performed, all other 

models use default values for the tuning hyperparameters. Cross-fitting with 5 folds was employed for all models except OLS. Stars denote 

statistical significance: * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

 

 

 

 


