Countries for Old Men:
An Analysis of the Age Wage Gap*

Nicola Bianchi Matteo Paradisi

September 28, 2021

Abstract

In the last three decades, the wages of older workers in many high-income countries grew at a much faster rate than the wages of younger workers. This paper uses extensive administrative data from Italy and Germany to provide an analysis of this age wage gap. First, the widening of the age wage gap stemmed from the increasing difficulty of younger workers to reach high-paying jobs. Second, a large part of the deterioration in the careers of younger workers occurred within firms. Third, different appropriation of firm-specific rents can explain more than half of the widening in the age wage gap. The last portion of the analysis shows that the effects are larger for firms with constraints in adding higher-ranked jobs to their organization, highlighting the role of career spillovers in widening the age wage gap.

JEL Classification: J31, J21, M51, J11.
Keywords: wage growth, age wage gap, career spillovers.

*Contact information: Nicola Bianchi, Kellogg School of Management, Northwestern University, and NBER, 2211 Campus Drive, 60201 Evanston IL, nicola.bianchi@kellogg.northwestern.edu; Matteo Paradisi, EIEF, via Sallustiana 62, 00187 Rome, matteo.paradisi@eief.it. We thank Luigi Guiso, Raffaele Saggio, as well as seminar and conference participants at EIEF, INPS, Northwestern for helpful comments. We thank Chuqiao Nan and Georgii Zherebilov for outstanding research assistance. The realization of the present article was possible thanks to the sponsorship and financial support to the “VisitINPS Scholars” program. This study uses the Cross-sectional model of the Linked-Employer-Employee Data (LIAB) (Version 2, Years 1993-2017) from the IAB. Data access was provided via on-site use at the Research Data Centre (FDZ) of the German Federal Employment Agency (BA) at the Institute for Employment Research (IAB) and subsequently remote data access (project number: fdz1968/1969).
1 Introduction

In the last three decades, the average age of the workforce increased in most high-income countries. In the United States, for example, the share of workers who were at least 55 years old increased by 88 percent from 12.9 percent in 1985 to 24.3 percent in 2020, more than any other age group. Similarly, in Italy, one of the main focuses of our empirical analysis, the mean worker age increased by 19 percent from 35.8 years old in 1985 to 42.7 years old in 2019. In many countries, this dramatic demographic shift was fueled by (i) a stark decrease in birth rates over time, (ii) a progressive increase in life expectancy, and (iii) an increase in retirement age. Moreover, the progressive aging of the workforce is projected to continue for the foreseeable future (Allen, 2019).

This is not the first time in recent history in which the workforce demographics have been rapidly changing. In the second half of the 1960s, the entry of the postwar “Baby-Boom” cohort in the labor market caused an opposite demographic shift in the workforce, leading to a large decrease in the average worker age. In the United States, the ratio between workers who were at most 35 years old and workers who were at least 35 years old jumped from 0.46 in 1966 to 0.67 in 1976 (Freeman, 1979). This change coincided with a slowdown in the growth of younger workers’ wages relative to older workers’ wages. Specifically, the ratio of median weekly earnings between workers who were between 45 years old and 49 years old and workers who were between 25 years old and 29 years old increased by 14 percent between 1968 and 1975. Prior works have attributed this wage trend to a combination of (i) imperfect substitutability in production between younger and older workers and (ii) an increase in the supply of younger workers relative to the stock of older workers (Welch, 1979; Freeman, 1979; Levine and Mitchell, 1988).

If we applied the same economic thinking to the progressive aging of the workforce that took place during the last three decades, we should expect the larger supply of older workers to have decreased their wage growth relative to the wage growth of younger workers. However, we establish that many high-income countries experienced the opposite trend: the **age wage gap** significantly widened in favor of older workers. Using both extensive administrative data and aggregate statistics, we find that the age wage gap increased by 0.10 log points in favor of older workers in the United States (1985-2019), by 0.19 log points in Italy (1985-2019), by 0.10 log points in Germany (1996-2017), by 0.11 log points in the United Kingdom (1997-2019), and by 0.17 log points in Denmark (1997-2019). Moreover, we establish that this trend cannot be simply explained by variations in the composition of older and younger workers. For example, we find that the previous results are robust to controlling for the

1 https://bit.ly/3eQmakN.
increase in temporary contracts or foreign-born workers among younger workers and for health improvements among older workers.

After establishing its existence, this paper provides a comprehensive analysis of the widening of the age wage gap with particular emphasis on the role played by firms and their internal labor markets. This analysis leverages confidential employer-employee administrative data from Italy and Germany with 347 million observations on 38 million workers and 3.7 million firms. We also use survey data from the Current Population Survey for the United States in order to replicate the portion of the analysis that does not require information on the matching between workers and firms. Overall, our results are qualitatively similar across these three different countries. In the rest of the introduction, we will focus on the results on Italian workers due to the fact that the Italian dataset is the only one that allows us to perform the full spectrum of tests included in the paper.

We establish three main results about the wage gap between younger and older workers. First, the widening of the age wage gap is associated with a slowdown in the careers of younger workers, while the careers of older workers improved. Between 1985 and 2019, the probability of workers who were less than 35 years old of being in the top quartile of the wage distribution decreased by 34 percent, while workers who were more than 55 years old became 16 percent more likely to be in the top quartile. Moreover, we find that the wage growth of new entrants in the labor market became progressively lower over time. Finally, we establish that the probability of younger workers of holding managerial positions decreased by two thirds between 1985 and 2019, while the same probability increased by 87 percent among older workers.

Next, we build upon these initial descriptive evidence by proposing a more formal decomposition of the wage change for each age group. Specifically, the wage change between 1985 and 2019 for each age subgroup can be divided into two separate parts: (i) a ranking-shift component that measures the change in wages that would have prevailed if younger and older workers were allowed to move over time along the wage distribution, but the support of the wage distribution remained fixed in 1985; and (ii) a pure wage-trend component that computes the counterfactual change in wages that would have prevailed if the average wages in different quintiles of the distribution could vary over time, but the shares of younger and older workers along the wage distribution stayed constant at their 1985 levels. We find that the ranking-shift component accounted for up to 81 percent of the overall widening of the wage gap between workers over 55 years old and workers under 35 years old. In other words, most of the variation in the age wage gap is due to younger and older workers moving in different directions along the wage distribution, rather than stemming from the fact that older workers held occupations that started receiving higher wages.
Second, wage changes that happened within firms were important to explain the widening in the age wage gap. Within-firm factors accounted for 51 percent of the gap in 1985, 61 percent in 2000, and again 51 percent in 2019. These results are different from one of the main takeaways of Song et al. (2019), which finds that most of the increase in wage dispersion in the United States between 1981 and 2013 stems from between-firm components, such as assortative matching between workers and firms. This contrast suggests that the factors that led to an increase in the age wage gap differ from the factors the contributed to increase the overall wage inequality.

Third, changes in the appropriation of firm rents played a major role in widening the age wage gap. We establish this result by estimating a two-way fixed-effect model that allows us to separate log wages into worker-specific and firm-specific effects (Abowd, Kramarz, and Margolis, 1999). The main result from this estimation is that differences in firm rents between 1985 and 2019, as well as between over-55 workers and under-35 workers, accounted for 69 percent of the overall increase in the age wage gap.

Moreover, we can further decompose this double difference into two parts: (i) a bargaining component that compares differences in average firm rents between different age groups within the same set of jobs, and (ii) a sorting component that compares differences in average firm rents for the same age group across different jobs (Card, Cardoso, and Kline, 2016). There are two main findings that stand out from this decomposition. In the set of firms in which under-35 workers were more likely to work, more bargaining power allowed over-55 workers to appropriate a larger share of firm rents. Another large portion of the difference in firm rents stems from the fact that under-35 workers became more concentrated among lower-rent firms.

The last portion of the analysis investigates what economic factors are compatible with the widening of the age wage gap. Overall, our findings are broadly consistent with the hypothesis that costly firm separations and the increasing inability of firms to add higher-ranked positions to their organizations (possibly due to a decrease in firm productivity and an increase in retirement age) generated negative career spillovers from older workers to younger workers (Bianchi et al., 2021). Older workers started enjoying the rents associated with their higher-ranked positions for longer, while younger workers experienced a much lower wage growth, due to their increasing difficulty in reaching the top of the job ladder. Consistent with this theory of negative career spillovers between younger and older workers, we find that the widening of the age wage gap was indeed larger among firms with more limited opportunities to promote their younger workers, that is, older and larger firms with lower employment growth (Bennett and Levinthal, 2017).

Other factors, such as an increase in the supply of older workers, skill-biased technological
change (SBTC), and trends in the returns to education and job experience, cannot explain the widening of the age wage gap. For example, as noted earlier, the increased supply of older workers over time would predict that the wage gap would narrow over time in favor of younger workers. Similarly, SBTC should favor the more technologically savvy younger workers, again decreasing the preexisting wage disparity with older workers.

The contribution of this paper is twofold. First, it contributes to the literature that studies different trends in the level and variance of wages. Prior works have used data from several countries to document the nature of the wage inequality (Autor, Katz, and Kearney, 2006; Autor, Katz, and Kearney, 2008; Card, Heining, and Kline, 2013; Song et al., 2019), as well as the wage gap between men and women (Black and Juhn, 2000; Del Bono and Vuri, 2011; Card, Cardoso, and Kline, 2016), between high-skill and low-skill workers (Katz and Murphy, 1992; Card and DiNardo, 2002; Acemoglu and Autor, 2011), and between more educated and less educated workers (Goldin and Margo, 1992; Card and Lemieux, 2001; Goldin and Katz, 2009). We borrow similar techniques, such as Oaxaca-Blinder decompositions and AKM models, to focus on an less-well-known wage trend: the growing gap between older and younger workers.\(^2\) Moreover, this paper contributes to this branch of the literature by showing that the age wage gap differ from other types of wage gap. For example, the increase in the wage gap between younger and older workers stemmed more heavily (i) from within-firm factors compared with the overall increase in wage inequality (Song et al., 2019), and (ii) from differential appropriations of firm rents compared with the gender age gap (Card, Cardoso, and Kline, 2016). Overall, these findings indicate that the age wage gap depended more heavily on the characteristics of the internal labor markets.

Second, this paper contributes to the literature that studies the interconnectedness of the careers of coworkers (Hayes, Oyer, and Schaefer, 2006; Jäger and Heining, 2019; Carta, D’Amuri, and von Watcher, 2020). Within this broader literature, prior works have documented that limited career opportunities can generate negative career spillovers across coworkers in bureaucracies (Bertrand et al., 2018), academia (Borjas and Doran, 2012), sports (Brown, 2011; Gong, Sun, and Wei, 2017), firms in transitioning economies (Friebel and Panova, 2008), as well as privately owned firms in high-income economies (Boeri, Garibaldi, and Moen, 2017; Bianchi et al., 2021). There are two papers that are especially relevant for our analysis. Bianchi et al. (2021) uses administrative data to show that an unexpected increase in the retirement age of older Italian workers reduced the wage growth of their younger coworkers. Moreover, Mohnen (2017) uses data at the level of U.S. commuting zones to doc-

\(^2\) Rosolia and Torrini (2007) and Naticchioni, Raitano, and Vittori (2014) use Italian survey data to show that early-career wages decreased during the 1990s. We complement their findings by showing that the widening of the age wage gap was common in many other countries. Moreover, we provide new results on the factors that may have generated these wage trends.
ument that fewer retirees are associated with higher youth unemployment in low skill jobs. Our paper uses extensive worker-level administrative data from multiple countries to show that the widening of the age wage gap in the last three decades is compatible with the main takeaway of these prior works: extending the careers of older workers can negatively affect the wage growth of their younger coworkers, especially within firms with limited ability to add new slots to their ranks.

2 Data and Age Wage Gap

2.1 Italian Social Security Data

Our empirical analysis uses 35 years of confidential administrative data provided by the Italian Social Security Institute (INPS). This dataset consists of matched employer–employee records for the whole population of private-sector, nonagricultural firms with at least one salaried employee. The dataset combines individual-level information about workers, such as age, other demographic characteristics, wage, and type of contract, with information about the firm, such as sector, location, and age. In each year of data, we restrict our analysis to workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. We impose these restrictions to weed out workers with very short-lived job spells within each year. Unless otherwise specified, our analysis focuses on workers with full-time contracts, although we will include part-time workers in some robustness checks.

This dataset allows us to use two wage measures. First, we leverage the total yearly labor earnings. This variable includes wages, as well as bonus payments that many Italian workers receive. Using yearly earnings as a measure of wages presents a trade-off. On the one hand, they account for all returns to labor in a calendar year. On the other hand, a variation in yearly earnings may confound changes in hours worked and pay rates. As an additional measure of earnings, we would like to isolate pay rates, but we do not directly observe them in the data. However, we can at least reduce the influence of labor-supply choices on labor earnings by moving to weekly wages. We compute them by dividing the yearly labor earnings by the number of working weeks. This new variable may confound variation in hours worked and pay rates only if workers differ in the number of days they work within a week. Although this is surely possible, it is important to note that most of our analysis focuses on full-time employees, who therefore display small variation along this dimension.

All measures of labor earnings, as well as any other monetary variable used in the analysis,

3 The most common bonus payments are called thirteenth and fourteenth salary. The thirteenth salary is a mandatory bonus payment given to employees at the end of December. The fourteenth salary is a voluntary bonus usually paid during the summer.
are expressed in 2015 euros using the conversion tables prepared by the OECD.4 Moreover, they are winsorized at the 99.9th percentile to limit the influence of extreme outliers.

Overall, our dataset includes 312 million observations with information on 28,911,242 full-time workers and 3,532,905 firms between 1985 and 2019 (Table 1, Panel A). Of all employees, 69 percent were male, 6 percent had temporary contracts, and 1 percent were not born in Italy. Moreover, the average worker was 38 years old and had 18 years of experience in the labor market. On average, yearly earnings were €26,660 and weekly wages were €549. Manufacturing was the economic sector that employed the largest number of workers (37 percent), followed by services (32 percent) and construction (8 percent).

2.2 General Trends in Age Wage Gap

Not surprisingly, our data indicate that the average worker in the Italian market became older between 1985 and 2019. The mean age of workers increased by 19 percent from 35.8 years in 1985 to 42.7 years in 2019 (Figure 1, Panel A). This large increase in the average age was associated with a broader shift in the demographic composition of the labor force. Between 1985 and 2019, the share of workers who were over 55 years old (thereafter, O_{55} workers) increased by 9.5 percentage points, while the share of workers who were under 35 years old (U_{35} workers) decreased by 22 percentage points (Figure 1, Panel B). As a direct consequence of their increasing number, O_{55} workers started receiving a larger share of the total wage bill at the expense of U_{35} workers (Figure A1). Specifically, the share of the wage bill destined to O_{55} workers increased from 5.7 percent in 1985 to 17.5 percent in 2019, while the share earned by U_{35} workers decreased from 41.2 percent to 19.7 percent.

Three main post-World-War-II demographic trends can explain the progressive aging of the workforce. First, the birth rate in Italy decreased from 18.1 births per 1,000 people in 1960 to 7.3 births per 1,000 people in 2018.5 Second, life expectancy at birth increased by 21 percent from 1960 to 2018, moving from 69.1 years to 83.3 years.6 These two factors contributed to the increased aging of the whole population. Third, a series of pension reforms progressively increased the minimum age at which workers became eligible to receive a public pension, inducing many older workers to spend more time in the labor force before retirement.7

4 The tables can be downloaded from https://web.archive.org/web/20201109004157/https://data.oecd.org/price/inflation-cpi.htm.
7 In the last three decades, the 1992 “Amato reform,” the 2007 “Prodi reform,” and the 2011 “Fornero reform” raised the minimum thresholds for pension eligibility for most workers in the private sector.
While the workforce in Italy progressively aged, the wages of older workers grew at a much faster rate than the wages of younger workers. Specifically, the gap between the mean log weekly wages of O55 workers and U35 workers grew from 0.19 log points in 1985 to 0.38 log points in 2019 (Figure 2, Panel A). We can obtain a similar finding by replacing weekly wages with yearly earnings (Figure A2, Panel A). Moreover, the progressive widening of the age wage gap did not happen only at the average, but rather at any point of the wage distribution (Table A1). For example, the age gap in log weekly wages at the 10th percentile grew from 0.04 log points in 1985 to 0.24 log points in 2019, while the gap at the 90th percentile grew from 0.43 log points in 1985 to 0.61 log points in 2019. Similarly the age wage gap at the median increased from 0.13 log points in 1985 to 0.27 log points in 2019 (Figure A2, Panel A).

This trend led to a stark transformation in the age profile of wages. U35 workers experienced at most a 14-percent growth in real weekly wages between 1985 and 2019, while O55 workers experienced wage increases between 32 percent for 55-year-olds and 53 percent for 65-year-olds (Figure 2, Panel B). As a consequence, the age profile of wages became much steeper over time: the 1985 curve started flattening around age 40, while the 2019 curve kept increasing until age 62.

2.3 Controlling for Compositional Changes

In this section, we test whether the widening of the age wage gap is associated with a change in the composition of younger workers and older workers. Overall, our analysis shows that the wages of older workers grew at a much faster rate than the wages of younger workers even after controlling for changes in observable characteristics.\(^8\)

To start, we find that the share of workers who (i) were born abroad or (ii) had temporary contracts increased more rapidly among U35 workers than O55 workers. Between 1985 and 2019, the share of foreign-born workers increased by 15 percentage points among U35 workers, while it increased by only 7 percentage points among O55 workers. Similarly, in 2019, the share of workers with temporary contract was equal to 22.5 percent among U35 workers and only 7 percent among O55 workers (Table A2, Panel A).\(^9\) Workers who were born abroad or had temporary contracts also tended to have lower-than-average wages. For example, in 2019, the average weekly wage of immigrant workers was 0.24 log points lower than the average wage of domestic workers. In the same year, the average weekly wage of temporary

\(^8\) In this section, we will not control for education because the Social Security data does not include usable information on this topic. However, Section 7 will use external data sources to discuss the possible role of education and experience in more depth.

\(^9\) The share of workers with temporary contracts was equal to zero in 1985 because temporary contracts were introduced only in 1998 (d.lgs. 280/97 and 468/97).
workers was 0.45 log points lower than the mean wage of permanent workers (Table A2, Panel B).

In theory, these time trends could account for the widening gap in the labor-market outcomes of younger and older workers. We gauge their importance by computing the age wage gap on two different subgroups of workers who were not directly affected by these compositional changes: (i) workers who were born in Italy and (ii) workers with open-ended contracts. In both cases, the age wage gap computed on these more restricted subgroups tracks almost perfectly the age wage gap computed using observations from all workers in the sample (Figure A3, Panel A). In short, two of the major changes in the composition of workers cannot explain the overall increase in the age wage gap.\footnote{This analysis cannot account for the role of selection among domestic workers and permanent workers. However, these two subgroups became less numerous over time among U35 workers. Therefore, it is plausible to assume that U35 workers within these two subgroups became more positively selected. Therefore, the remaining selection should contribute to decrease the age wage gap, rather than increasing it.}

Other changes in the composition of younger and older workers are not likely to account for the age gap in wages. For example, it is true that younger workers became more likely to hold part-time contracts over time, which in turn could explain worse labor-market outcomes. Specifically, between 1985 and 2019, the share of workers with part-time contracts among U35 workers increased by 32 percentage points, while it increased by only 26 percentage points among O55 workers. It is also true that part-time workers earn less than full-time workers, in part due to the lower number of hours worked. In our sample, the mean weekly wage of part-time workers was 0.25 log points lower than the mean weekly wage of full-time workers (Table A2). However, our baseline results in Section 2.2 are already excluding part-time workers from the sample and, therefore, cannot be influenced by the disproportionate increase in part-time younger workers.\footnote{For completeness, we compute the age wage gap using both full-time and part-time workers, rescaling the observations from the latter group to be full-time equivalent (Figure A3, Panel B). In this case, the age wage gap increased by 0.13 log points between 1985 and 2019.}

Moreover, the progressive entry of women in the labor market could be an important factor if we assumed that (i) women had worse labor-market outcomes than men and (ii) the entry of women was more prominent among younger workers. Although the data support the hypothesis that women earned less than men (in our sample, 0.14 fewer log points in 2019), we do not find that the share of women increased more among U35 full-time workers. In fact, we establish that the share of women decreased by 5 percentage points among U35 workers, while it increased by 9 percentage points among O55 workers. Therefore, this trend cannot account for the widening of the age wage gap. We can further prove this point by measuring the age wage gap using only men (Figure A3, Panel B): within this subgroup, the age gap increased by 0.17 log points between 1985 and 2019, closely matching the trend of
Next, we explore the hypothesis that the higher wage growth among older workers may stem from substantial improvements in health over time and, therefore, large increases in productivity. If this theory fits the data, we should observe smaller effects in economic sectors that are less physically demanding. In these sectors, health improvements should translate into small or zero productivity gains because poor health at baseline was plausibly not a major constraint to longer careers. Following this logic, we compute the age wage gap using observations from either (i) sectors that are not designated by law as being physically demanding or (ii) sectors in which the share of the wage bill represented by payments to workers for injury and sick leaves is below the top quartile. In both cases, the widening of the age wage gap is large and close to the baseline (Figure A3, Panel C). In short, the data indicate that improvements in health among older workers do not appear to be central for explaining the widening of the age wage gap.

In a separate set of results, we control for all the previous worker characteristics simultaneously. We regress log weekly wages on a dummy variable for men, one for domestic workers, one for workers with temporary contracts, and one for sectors that are not physically demanding, as well as on fixed effects for the province of residence and for 2-digit economic sectors. We run separate regressions in each year, therefore allowing all previous coefficients to vary over time. We then use the residuals from these regressions to compute the age wage gap. After controlling for all these worker characteristics, the data still indicate that the wages of older workers grew at a much faster rate: the age wage gap increased by 0.17 log points without sector fixed effects and by 0.13 log points with sector fixed effects (Figure A3, Panel D).

2.4 Age Wage Gap in Other High-Income Countries

In this section, we show that the widening gap in wages between younger and older workers was not specific to the Italian labor market. We prove this point by leveraging extensive administrative data from Germany as well as survey data and aggregate statistics from the United States, the United Kingdom, Denmark, Spain, and Canada. If pooled, the administrative data from Italy and Germany include 347 million observations with information on 38 million workers and 3.7 million firms (Table 1).

We have access to confidential employer-employee Social Security data for Germany from 1996 to 2017 provided by the Institute for Employment Research (IAB). This dataset combines information from a sample of establishments with at least one employee subject to Social Security taxation (the IAB Establishment Panel) with information on workers coming

12There is more information about these definitions in the notes of Figure A3 and Table A3.
from the Integrated Employment Biographies (IEB). Unlike the Italian Social Security data, the German dataset is a snapshot of the labor market taken on June 30th of every year, rather than a comprehensive description of all labor-market events that happened throughout the year.

To measure the age wage gap, we use the daily wage that is associated with each individual’s prevalent spell, that is, the spell with the highest earnings. This variable is expressed in 2015 euros using the conversion tables prepared by the OECD. Moreover, it should be noted that nominal earnings are top-coded. The cap varies from year to year, but is usually close to the 95th percentile. We select our sample applying the same restrictions described in Section 2.1 for the Italian Social Security data.13

In Germany, the age wage gap increased steeply from 0.28 log points in 1996 to 0.49 log points in 2006 and then decreased to 0.38 log points in 2017 (Figure B1, Panel A). Although they followed different trajectories, the age wage gaps in Germany and Italy experienced a similar overall increase between 1996 and 2017: the gap increased by 0.07 log points in Italy and by 0.10 log points in Germany. Unlike the Italian gap, the German age wage gap widened mostly closer to the mean and the median of the distribution of daily wages, rather than at the very top and bottom (Table B1, Panel A).

In addition to using comprehensive and confidential administrative datasets for Italy and Germany, we can compute the age wage gap for other countries using publicly available survey data and aggregate statistics.14 Remarkably, with the exception of Canada, which experienced a slightly u-shaped trend, the age wage gap followed the same increasing trend that we first observed in Italy (Figure B1, Panel B). This result holds even for countries like the United States and the United Kingdom with vastly different labor-market institutions. For example, in the United States, the gap in log mean wages moved from 0.16 log points in 1985 to 0.19 log points in 2002, always in favor of older workers. Then, it steeply increased to 0.33 log points in 2013, before slightly shrinking down to 0.26 log points in 2019. The age gap widened even more at the very top and bottom of the wage distribution (Table B1, Panel B). In the United Kingdom, the age gap in log median wages increased from 0.15 log points in 1997 to 0.26 log points in 2019. The age wage gap in Spain tracked very closely the trend followed by the age wage gap in the United Kingdom: it started at 0.13 log points in 1998 and increased to 0.21 log points in 2018.

Denmark is another interesting case study. The country started at a much lower degree of disparity between younger workers and older workers than any other country in the sample: the age wage gap was equal to only 0.06 log points in 1997. However, in spite of a lower

13Appendix B.2 provides additional details about the German data and sample selection.

14Appendix B.3 provides more details about these data sources.
starting point, the age wage gap experienced a very steep increase over time, reaching 0.23 log points in 2019 and surpassing the levels observed in Spain and Canada.

In short, administrative data, labor-force surveys, and aggregate statistics reveal that the widening of the age wage gap is a phenomenon that transcended the Italian labor market. It was present in countries with much more liberal economic institutions than the Italian ones (like the United States and the United Kingdom), as well as countries with more or equally developed welfare states (like Germany and Denmark).

3 Decline in the Careers of Younger Workers

In this section, we start decomposing the gap in wages between younger and older workers into meaningful components. The main takeaway of our analysis is that younger workers faced increasing difficulties in reaching high-paying positions, while older workers experienced the opposite trend. This slowdown in the careers of younger workers can account for most of the increase in the wage gap between U35 workers and O55 workers.

3.1 Descriptive Evidence on Careers of Younger Workers

The empirical evidence shows that younger workers became less likely to reach the top of the wage distribution. We can show this fact in several ways.

First, the probability of U35 workers of being in the top quartile of the distribution of weekly wages decreased by 34 percent, moving from 15 percent in 1985 to 10 percent in 2019 (Figure 3, Panel A). This decrease at the top of the distribution was compensated by an increase at the bottom. The probability of U35 workers of being in the bottom quartile increased by 23 percent from 34 percent in 1985 to 41 percent in 2019, while the probability of being in the two middle quartiles showed little change. This finding becomes even starker if we move from quartiles to vingintiles (Figure 3, Panel B). In this case, we can observe that the share of U35 workers decreased almost monotonically from the lowest to the next-to-highest vingintile between 1985 and 2019.

On the contrary, O55 workers experienced the opposite trend. Their probability of being in the top quartile of the distribution of weekly wages increased by 16 percent from 32 percent in 1985 to 37 percent in 2019, while their probability of being at the bottom decreased by 23 percent from 23 percent in 1985 to 18 percent in 2019 (Figure 3, Panel C). Moreover, the share of O55 workers increased almost monotonically from the lowest to the next-to-highest vingintile (Figure 3, Panel D).

This initial finding does not hold at the very top of the wage distribution (Figure C2). For example, between 1985 and 2019, the share of U35 workers in the top 1 percent and

\[15\text{Replacing weekly wages with yearly earnings does not change these results (Figure C1).}\]
top 0.5 percent of the distribution of weekly wages slightly increased by 11 percent and 5 percent, respectively. Instead, over the same period, the share of O55 workers decreased by 40 percent and 44 percent, respectively. Therefore, it is important to remember that worse labor-market outcomes affected all younger workers but those within the top 5 percent of the wage distribution.

Second, the start of the careers of new entrants in the labor market became slower, showing progressively lower wage growth (Figure C3). Specifically, for U35 workers who entered the labor market for the first time between 1985 and 1989, the median weekly wage in the first year of work was equal to 79 percent of the median wage of all workers. After the first year, the median weekly wage of these new entrants grew until it became 94 percent of the median wage of all workers by the end of the sixth year of work.

If we plot this curve for U35 workers who entered the labor market after 1989, we can observe two main changes. First, the wage in the first year of work became a lower proportion of the median wage of all workers. For example, for workers who entered the labor market for the first time between 2005 and 2009, the first wage was only 75 percent of the median wage of all workers. Second, the wage growth during the first six years of work became lower. Among the workers who entered between 2005 and 2009, the median wage grew to being only 89 percent of the median wage of all workers by the sixth year of work, failing to catch up to the levels experienced by workers who entered the labor market before 2000.

Third, instead of focusing on wages, we can analyze changes in the type of positions held within firms. The share of managerial jobs held by O55 workers grew from 12 percent in 1996 to 28 percent in 2019, while the share of U35 managers decreased from 8 percent to 3 percent over the same period (Figure C4, Panel A). A plausible concern is that this finding could be generated by the large increase in the number of O55 workers. In fact, if O55 workers were more likely to be managers at baseline, the progressive aging of the population could mechanically increase the share of O55 managers. To address this issue, we can divide the number of O55 managers by the total number of O55 workers, rather than by the total number of managers. After doing so, we can observe an increase in the share of O55 managers from 9 percent of all O55 workers in 1996 to 11.5 percent of all O55 workers in 2019, while the share of U35 managers shows little change over time (Figure C4, Panel B). In short, these findings indicate that the increased probability of O55 workers to hold managerial positions reflects a more structural change in the labor market, rather than just a mechanical shift in demographics.

16The Social Security data allow us to identify workers with managerial or high-skill tasks from 1996. In the Italian system, these workers are called dirigenti e quadri, respectively.
3.2 Decomposition of the Age Wage Gap

So far, the descriptive evidence pointed to a progressive slowdown of the careers of younger workers. In this section, we propose a more formal decomposition of the change in wages between years and age groups.

Proposition 1. The change in average log wage for age group a between years t and t' can be written as follows:

$$
\Delta w_a^{t,t'} = \sum_v (s_{a,v,t'} - s_{a,v,t}) \bar{w}_{v,t} + \sum_v (s_{a,v,t'} - s_{a,v,t}) (\bar{w}_{v,t'} - \bar{w}_{v,t})
$$

$$
+ \sum_v s_{a,v,t} (\bar{w}_{v,t'} - \bar{w}_{v,t}).
$$

(1)

In this equation, $s_{a,v,t}$ is the share of workers in age group a, vingintile v of the distribution of wages, and year t. Moreover, $\bar{w}_{v,t}$ is the mean log wage in vingintile v and year t.17

For a given age or age group, the change in wages between two years can be written as the sum of three components. First, a portion of the wage change comes from variation over time in the shares of workers in age group a and vingintile v of the wage distribution, keeping the wage distribution fixed at baseline. We call this component ranking shift to emphasize that it stems entirely from shifts along the wage distribution, while keeping the support of the distribution untouched. Second, another portion of the wage change stems from variation over time in the average wages earned in different vingintiles of the distribution, keeping the share of workers in age group a and vingintile v fixed at baseline. We call this component wage trend. Third, the last portion of the wage change is a residual that comes from the interaction between the ranking shift and the wage trend. For example, it captures the fact that the share of workers in age group a may increase over time in the same vingintile in which average wages are increasing. Finally, we can group the first and second component on the right-hand side of Equation (1) to measure the total effect of a shift in ranking over time, because both parts contain changes in the share of workers in age group a that are in different vingintiles of the wage distribution.

Before we move to the results, it is helpful to discuss how this decomposition relates to the previous findings in Section 3.1. Equation (1) indicates that the widening of the age wage gap can stem from two forces. First, U35 workers may have become more likely to be in the

17Appendix D describes all the steps required to obtain the decompositions included in this section.
bottom vingintiles of the wage distribution, and vice versa for O55 workers (ranking shift). Second, U35 workers may have found themselves in parts of the distribution that experienced a lower growth in average wages, and vice versa for O55 workers (wage trend). The descriptive evidence that we presented in Section 3.1 suggested that the ranking-shift component played an important role in generating diverging wage trends between U35 workers and O55 workers.

Next, we estimate Equation (1) using log weekly wages between 1985 and 2019 (Figure 4, Panel A). At least three things are worth noting about these results. First, the wage-trend component increased the wages of all workers, including the younger ones. In other words, if we could allow average wages to change over time while blocking workers in different age groups to move along the wage distribution, all age groups would have experienced an increase in their real weekly wages.

Second, the ranking-shift component contributed to decrease the wages of younger workers and to increase the wages of older workers. It indicates that movements of younger workers between vingintiles of the wage distribution caused a decrease in their weekly wages over time, while the opposite is true for workers who were at least 51 years old.18 Consistent with this finding, we already established in Section 3.1 that U35 workers became more likely to be at the bottom of the wage distribution, while O55 workers became more likely to be at the top.

Third, if we focus on differences between younger and older workers, it appears clear that ranking shift was much more important than wage trend in widening the age wage gap.

\textbf{Proposition 2.} In the next set of results, we decompose more directly the wage difference between U35 workers and O55 workers over time. This double difference can be written as follows:

\[
\Delta w_{t,t'}^{O55} - \Delta w_{t,t'}^{U35} = \sum_v \Delta s_{O55-U35,v,t'-t} \hat{w}_{v,t} + \sum_v \Delta s_{O55-U35,v,t'-t} (\hat{w}_{v,t'} - \hat{w}_{v,t}) + \sum_v (s_{O55,v,t} - s_{U35,v,t}) (\hat{w}_{v,t'} - \hat{w}_{v,t}) .
\]

(2)

In this equation, $\Delta s_{O55-U35,v,t'-t}$ is the double difference in the share of workers in vingintile v (i) between O55 workers and U35 workers and (ii) between years t and t'. It can be rewritten

18Moreover, the effect of ranking shift is almost monotonically increasing with age. Therefore, when we focus on U35 workers, rather than on individual ages, we underestimate the wage losses of workers who were less than 25 years old.
We compute the components on the right-hand side of Equation (2) for every year between 1985 and 2019 using log weekly wages to establish three main results (Figure 4, Panel B). First, by 2019, ranking shift accounted for 78 percent of the total wage gap between U35 workers and O55 workers. Second, the ranking-shift component has been the major driver of the wage gap throughout the period under consideration, contributing between 53 percent in 1987 and 81 percent in 2004. Third, ranking shift accounted for an even larger share of the gap if we replace weekly wages with yearly earnings (83 percent in 2019), suggesting that trends in the number of yearly work hours may have contributed to slowing down the careers of younger workers (Figure D1).

4 Age Gap Between and Within Firms

In Section 3, we established that most of the widening in the age wage gap can be attributed to the fact that younger workers faced increasing difficulties in reaching the top of the wage distribution, while older workers experienced the opposite trend. In this section, we investigate the role of internal and external labor markets by decomposing the overall age wage gap into a between-firm component and a within-firm component. This analysis allows us to assess whether younger workers became more likely to work for lower-paying firms or whether they started advancing more slowly than their older coworkers within their employers’ boundaries.

4.1 Decomposition Between and Within Firms

In this section, we propose a decomposition of the age wage gap in a given year into a between-firm component and a within-firm component.

Proposition 3. In year t, the difference in mean log wage between U35 workers and O55 workers can be written as follows:

$$\bar{w}_{O55,t} - \bar{w}_{U35,t} = \left(\frac{1}{N_{O55}} \sum_{i \in O55} \bar{w}_{f(i)} - \frac{1}{N_{U35}} \sum_{i \in U35} \bar{w}_{f(i)} \right) + \left(\frac{1}{N_{O55}} \sum_{i \in O55} \Delta w_{i,f(i)} - \frac{1}{N_{U35}} \sum_{i \in U35} \Delta w_{i,f(i)} \right).$$

On the left-hand side of this equation, $\bar{w}_{O55,t}$ is the mean log weekly wage of O55 workers in year t, while $\bar{w}_{U35,t}$ is the mean log weekly wage of U35 workers in year t. On the right-hand side of the equation, N_{O55} is the number of O55 workers in year t, N_{U35} is the number of
U35 workers in year t, $\bar{w}_{f(i)}$ is the mean log weekly wage in year t within firm $f(i)$ in which individual i works, and $\Delta w_{i,f(i)}$ is the difference between the log wage of worker i and the average log wage in firm $f(i)$ in year t ($\Delta w_{i,f(i)} = w_{i,f(i)} - \bar{w}_{f(i)}$).

Equation (3) divides the wage gap into the sum of two components. The first element measures the differences in the average firm-level log weekly wages between firms that employ O55 workers and firms that employ U35 workers. This between-firm component captures the differential sorting of younger and older workers across higher-paying and lower-paying firms. The second element of Equation (3) measures the difference (i) between workers’ log wages and the average log weekly wage in their firms, and (ii) between O55 workers and U35 workers. This within-firm component captures differences in the labor-market outcomes of younger and older workers relative to their coworkers.

Following Equation (3), we decompose the difference in log weekly wages between U35 workers and O55 workers separately for each year between 1985 and 2019 (Figure 5, Panel A). As already established in Section (2.2), the overall age wage gap increased over time. Between 1985 and 2005, most of the increase in the wage gap can be attributed to within-firm factors. The within-firm component accounted for 51 percent of the gap in 1985, 56 percent in 1990, 58 percent in 1995, 61 percent in 2000, and 58 percent in 2005. In the last fifteen years of data, the importance of between-firm factors increased until they accounted for 49 percent of the age wage gap in 2019.

In short, the data indicate that the internal labor markets played a primary role in widening the age wage gap. This result is in contrast with previous findings on wage inequality. For example, in the United States, Song et al. (2019) finds that the within-firm component can explain only 32 percent of the increase in the overall variance of wages between 1981 and 2013. This discrepancy suggests that the factors behind the widening of the age wage gap must differ from the factors that caused the more well-studied increase in wage dispersion.

Next, we decompose the wage gap between 1985 and 2019 for different age groups (Figure 5, Panel B). In this exercise, we compare O55 workers to workers between 20 years old and 50 years old, separating them into 30 different age groups rather than pooling younger workers into a single U35 category. This analysis highlights one main thing about the pattern of the results. The portion of the overall growth in wage gap that is explained by the within-firm component decreased with age. Specifically, within-firm factors accounted for 48 percent of the growth in wage gap between 20-year-olds and O55 workers, for 41 percent of the growth in wage gap between 30-year-olds and O55 workers, for 37 percent of the growth in wage gap between 40-year-olds and O55 workers, and finally for 21 percent of the growth in wage

19 The right-hand side does not show the time subscript t because all variables are observed at the same point in time. Appendix E contains the full derivation of this result.
gap between 50-year-olds and O55 workers. This finding is another piece of evidence that underlines the importance of internal labor markets in explaining the lower growth in the wages of younger workers.20

We conclude this section by discussing a piece of descriptive evidence that corroborates the importance of the within-firm component. For several percentiles of the distribution of weekly wages, we compute three variables in 1985 and 2019: (i) the average log weekly wage of workers who were in that percentile, (ii) the average log weekly wage of the older coworkers of U35 workers who were in that percentile, and (iii) the average log weekly wage of the younger coworkers of O55 workers who were in that percentile. Then, we compute the difference in these three averages between 1985 and 2019 (Figure E2, Panel A).

If we exclude the percentiles at the very top and bottom of the distribution, in which the wage growth of workers within those percentiles was always larger than the wage growth of their coworkers, this analysis confirms that younger workers fared worse than their older colleagues. Between the 25th percentile and the 75th percentile, the older coworkers of U35 workers always experienced a higher wage growth compared to U35 workers in the percentile, while the younger coworkers of O55 workers always experienced a lower wage growth compared to O55 workers in the percentile. This differences are often large in magnitude. For example, in the 35th percentile, workers experienced a 0.18-log-points increase in weekly wages between 1985 and 2019, the older coworkers of U35 workers experienced a 0.25-log-points increase, while the younger coworkers of O55 workers experienced a 0.14-log-points increase.21

4.2 Counterfactual Analysis

In this section, we focus even more closely on the role of internal labor markets. Section 3.2 established that ranking shift—that is, changes in the share of workers along the wage distribution, while keeping the support of the distribution constant in 1985—accounted for most of the increase in the age wage gap between 1985 and 2019 (Figure 4, Panel B). Here, we investigate how much of this ranking-shift effect happened within firms, rather than between them. For this purpose, we adapt to our specific research question a counterfactual exercise first developed by Machado and Mata (2005) and then further modified by Autor, Katz, and Kearney (2005) and more recently by Song et al. (2019).

In the first step, we sort workers into 100 percentiles based on their firms’ average weekly wage, separately for each year in the sample. Next, within each of these 100 firm-based groups, we sort workers into 500 quantiles based on the difference between their weekly wage

20All these findings hold if we use yearly earnings. (Figure E1)

21These findings are generally robust to using yearly earnings (Figure E2, Panel B).
and the average weekly wage in their firm-based group. The result of this two-step process is the sorting of all workers into 50,000 equally sized bins, which we call firm-worker groups.

The key feature of this sorting is that it allows us to rewrite the shares of workers in different parts of the wage distribution. Specifically, we can rewrite the share of workers in age group \(a \), firm-worker group \((f, e)\), and year \(t \), as follows:

\[
s_{a,(f,e),t} = \frac{s_{a,f,t}}{s_{a,f,t} + s_{a,(e|f),t}}
\]

(4)

Following Equation (4), Appendix F shows that it is possible to rewrite the total-ranking-shift component of Equation (2) as the sum of three elements: (i) a change over time in the share of workers in age group \(a \) and firm group \(f \), while keeping the distribution of workers within each firm-worker group and the level of wages fixed, (ii) a change over time in the share of workers in age group \(a \) and firm-worker group \((e|f)\), while keeping the sorting of workers across firm groups \(f \) and wages fixed, and (iii) a residual.

The first component describes a counterfactual scenario that isolates the between-firm portion of the total ranking shift: younger and older workers were allowed to move across firms as they did in the data, but the internal ranking within each firm group stayed constant. The second component describes a different counterfactual exercise that focuses on the within-firm portion of the total ranking shift: workers could experience changes in their relative ranking within their firm group, but they could not move across firm groups.

We start this analysis by decomposing the total ranking shift between 1985 and 2019 separately for U35 workers and O55 workers (Figure 6, Panel A). The within-firm component was the major driver behind the overall negative effect of ranking shift among U35 workers, accounting for 61 percent of the total. On the contrary, the between-firm component was solely responsible for the overall positive effect of ranking shift among O55 workers. Therefore, it transpires that two factors contributed to widen the difference in ranking shift between younger and older workers: (i) younger workers moved toward lower percentiles of the wage distribution mostly due to worse careers within their firms, and (ii) older workers improved their ranking in the wage distribution by moving to higher paying firms.

We can show what effect prevailed by plotting the difference in total ranking shift between U35 workers and O55 workers, as well as between 1985 and \(t \in [1986, 2019] \) (Figure 6, Panel B). The data indicate that both the within-firm component and the between-firm component were important drivers of the difference in ranking shift. In particular, within-firm factors were the predominant force until 2007, after which their influence decreased: they accounted for 51 percent of the total ranking shift in 1990, 79 percent in 2000, 40 percent in 2010, and 39 percent in 2019.
5 Age Gap in Firm Rents

Up to this point, we established three main facts about the age wage gap. First, between 1985 and 2019, the wages of older workers grew at a much faster rate than the wage of younger workers. Second, the increasing inability of younger workers to reach the top of the wage distribution within their firms was a major driver of this phenomenon. Third, compared with younger workers, older workers had a higher propensity to move to higher paying firms after 2007, further widening the age wage gap.

All the previous analyses treated the data as a series of repeated cross sections. In this section, we further investigate the role of firms by leveraging for the first time the longitudinal component of the Social Security dataset, which allows us to control more effectively for changes in observable characteristics over time.

5.1 A Model of Wages

We start by proposing a model of wage formation. The main goal of the model is to measure firm-level wage premiums for younger and older workers, distinguishing them from worker-level premiums and from the effect on wages of other observable characteristics. For this purpose, we adapt to our empirical context the widely used AKM model, which was first popularized by Abowd, Kramarz, and Margolis (1999). Specifically, we estimate the following wage function:

$$w_{i,t} = \theta_i + \psi_i^{a(i)}j(i,t)p + \beta_i^{a(i)}X_{i,t} + \varepsilon_{i,t}. \quad (5)$$

In Equation (5), the logged weekly wage of individual i in year t ($w_{i,t}$) is the sum of a worker-level fixed effect (θ_i), a fixed effect (also defined as firm rent or firm premium) for firm $j(i,t)$ that employs worker i in year t ($\psi_i^{a(i)}j(i,t)p$), time-varying worker-level characteristics ($X_{i,t}$), and time-varying unobserved factors ($\varepsilon_{i,t}$). The worker-level characteristics include a quadratic function of age and experience.\(^{22}\)

Equation (5) deviates from the most basic form of AKM model in two ways. First, it is estimated separately for workers in age group $a \in \{U35, O55\}$.\(^{23}\) Obtaining separate sets of firm fixed effects makes it possible to study whether U35 workers and O55 workers experienced a different appropriation of firm rents over time.

Second, instead of computing a single time-invariant fixed effect for each firm, we allow firm rents to vary every three years.\(^{24}\) Specifically, we interact the time-invariant firm fixed

\(^{22}\)Appendix G contains many more details about the estimation of this model.

\(^{24}\)Lachowska et al. (2019) and Engbom and Moser (2020) estimated a similar “time-varying” AKM model.
effects with dummies that identify twelve consecutive three-year periods p.

Equation (5) is estimated for both U35 workers and O55 workers on the largest dual connected set. This is the largest set of firms connected by firm-to-firm transitions of both younger and older workers (Table G1). The estimation of Equation (5) allows us to compute the difference in firm rents (i) between U35 workers and O55 workers and (ii) between 1985 and year $t \in [1986, 2019]$. To better assess the role played by firms, we further decompose the average difference in firm rents into two separate components: (i) sorting of younger and older workers between higher-rent and lower-rent firms and (ii) bargaining power of younger and older workers within firms. Specifically, we adapt to our empirical context a decomposition of firm fixed effects proposed by Card, Cardoso, and Kline (2016), as follows:

$$
E \left(\Delta t_{1985, \psi^{O55}_{j(i,t),p}} | a (i) = O55 \right) - E \left(\Delta t_{1985, \psi^{U35}_{j(i,t),p}} | a (i) = U35 \right)
$$

$$
= E \left(\Delta t_{1985, \psi^{O55}_{j(i,t),p}} - \Delta t_{1985, \psi^{U35}_{j(i,t),p}} | a (i) = O55 \right) + E \left(\Delta t_{1985, \psi^{U35}_{j(i,t),p}} - \Delta t_{1985, \psi^{U35}_{j(i,t),p}} | a (i) = U35 \right) \tag{6}
$$

$$
= E \left(\Delta t_{1985, \psi^{O55}_{j(i,t),p}} - \Delta t_{1985, \psi^{U35}_{j(i,t),p}} | a (i) = U35 \right) + E \left(\Delta t_{1985, \psi^{O55}_{j(i,t),p}} - \Delta t_{1985, \psi^{O55}_{j(i,t),p}} | a (i) = U35 \right) \tag{7}
$$

The first component of Equation (6) is the difference in firm rents (i) between 1985 and year t and (ii) between U35 workers and O55 workers, conditional on the set of jobs held by O55 workers. This element measures differential trends in bargaining power between U35 workers and O55 workers, that is, variation over time in their ability to appropriate firm rents in the same set of jobs. The second component of Equation (6) measures the difference of firm rents among U35 workers (i) between 1985 and year t and (ii) between the set of jobs held by O55 workers and the set of jobs held by U35 workers. It measures how much variation over time in the sorting of U35 workers across different jobs affected the overall difference in firm rents between U35 workers and O55 workers.

Moreover, it is possible to compute an alternative decomposition. In Equation (7), the first component isolates differences in bargaining power in the set of jobs held by U35 workers. The second component measures sorting of O55 workers across different sets of jobs.
5.2 Normalization and Identification

In this section, we discuss several aspects related to the identification of the firm effects.

In this type of AKM models, firm rents are identified up to a normalization. Therefore, for the purpose of the estimation, we normalize firm rents for both U35 workers and O55 workers by excluding the fixed effect of the largest firm in the dual connected set. Therefore, all remaining firm effects measure the average difference in wages with respect to the excluded firm. However, as we discuss in more details in Appendix G, this normalization does not have any consequence on the results.

Next, we point out another slight difference between Equation (5) and the most basic AKM model. As it is well known, the firm premiums $\psi_{j(i,t),p}$ are identified in the data using firm-to-firm transitions. However, in Equation (5), a firm is the combination of a physical firm and a period dummy. It follows that job moves are defined based on the firm-period pairs, rather than the physical firms. In other words, there are two types of workers who contribute to identifying the firm rents: (i) workers who moved across different physical firms within a period, and (ii) workers who stayed at a physical firm across different three-year periods.

Finally, we discuss the main pieces of evidence about the orthogonality condition needed for the identification of $\psi_{j(i,t),p}$. There are three main threats to identification. First, job moves should not be correlated with transitory firm shocks. Second, job moves should not be driven by unobserved firm-worker match effects. Third, job moves should not be correlated with transitory worker-level shocks.

A violation of each of these scenarios has clear implications for the trend of wages just before and after firm-to-firm transitions. Therefore, we pool all job moves in the dataset and set up event studies that include two periods before and two periods after each firm-to-firm transition. We then study the pattern of the average log weekly wage around job moves for all “movers” in the data, separately for U35 workers and O55 workers. The analysis of these event studies reveals four main results (Figure G1 and Table G3).

First, the overall direction of wage changes around moves is consistent with the position of each firm in the distribution of weekly wages. Specifically, wages decreased among workers who moved to firms in a lower quartile of the distribution of mean wage, increased among workers who moved to firms in a higher quartile, and stayed roughly constant among workers who moved to firms in the same quartile.

Second, there are not unusual positive spikes just before an upward move or negative spikes just before a downward move. Therefore, the data does not support the hypothesis that many moves are correlated with transitory firm shocks.

Third, the wage gains from joining a higher-wage firm are roughly symmetric to the wage
losses from joining a lower-wage firm. For example, among O55 workers, the average wage
gain from moving from a firm in the bottom quartile to a firm in the top quartile was 6.5
percent, while the opposite wage loss was 6.6 percent.

Fourth, there are not substantial and common trends in mean wages during the periods
the led to a firm-to-firm transition. Three quarters of the mean wage changes between period
-2 and period -1 were less than 0.04 log points.

Taken together, these results indicate that cross-firm differences in firm premiums drive
a large portion of the wage changes of movers. Consistent with prior works in this literature,
this framework appears to fit well the data in spite of its somewhat strong assumptions. We
refer to Appendix G for many more details about the identification and for other robustness
checks.\footnote{For example, we (i) perform an analysis on the residuals of Equation (5) to assess the fit of the model and
(ii) estimate a version of Equation (5) with job-match effects to test the sensitivity of the results to this
modeling variation.}

5.3 Main Results

We estimate Equation (5) following the procedure outlined in Section (5.1) and obtain
617,024 firm effects associated to 7,411,175 U35 workers and 551,146 firm effects associ-
ated to 2,511,677 O55 workers (Table G2). We use these firm premiums to compute the
double difference in Equation (6) and its two decompositions in Equation (6) and Equation
(7). There are at least three main findings that stem from this analysis (Table 2).

First, differences in the appropriation of firm rents between U35 workers and O55 workers
can explain 69 percent of the widening in the age wage gap between 1985 and 2019. The
importance of firm premiums followed an inverted u-shape: it started low, reached a peak
between 1997 and 2002, and then decreased until the end of the sample. These findings differ
from those of prior works on wage trends. For example, Card, Cardoso, and Kline (2016) finds
that differences in firm rents account for only 21 percent of the gender wage gap in Portugal
between 2002 and 2009.\footnote{However, it should be noted that Card, Cardoso, and Kline (2016) studies gender differences in the level
of firm rents, rather than in their trend.} Similarly, Card, Heining, and Kline (2013) finds that establishment
fixed effects explain only 18.5 percent of the dispersion of log wages in West Germany between
1985 and 2009. Our analysis indicates that differences in the appropriation of firm premiums
were more important than differences in worker characteristics in driving a wedge between
the wages of younger and older workers. In short, this first finding corroborates the fact that
firms played a major role in widening the age wage gap.

Second, the decomposition in Equation (6) indicates that sorting of U35 workers across
firms accounted for 54 percent of the difference in firm premiums and, therefore, 37 percent

\footnote{For example, we (i) perform an analysis on the residuals of Equation (5) to assess the fit of the model and
(ii) estimate a version of Equation (5) with job-match effects to test the sensitivity of the results to this
modeling variation.}
of the increase in the age wage gap. Its influence increased over time, accounting for all the differential appropriation in firm rents by 2019. In short, U35 workers became more likely to work in lower-premium firms over time, increasing the wage gap with respect to older workers.

Third, the second decomposition in Equation (7) indicates that the bargaining power of O55 workers in the set of firms in which U35 were more likely to work accounted for 79 percent of the difference in firm premiums and 55 percent of the increase in the overall age wage gap. The share of the difference in firm premiums that stems from differences in bargaining power peaked at 97 percent between 2000 and 2002 and then decreased to 57 percent between 2018 and 2019. This decrease in the importance of bargaining coincided with an increase in the portion of the difference in firm premiums that could be explained by sorting of O55 workers across firms, corroborating the evidence from repeated cross sections described in Section 4.2 and Figure 6.

5.4 Additional Evidence on Appropriation of Firm Rents
In this section, we provide an additional piece of evidence indicating that O55 workers enjoyed more bargaining power, compared with U35 workers. Specifically, we estimate a series of event studies centered around positive and negative firm-level value-added shocks. We then study how the average wages of U35 workers and O55 workers who stayed at these firms for at least two years before and three years after the value-added shock responded to these shocks.

This analysis produce three main findings. First, the data do not show the existence of significant trends in wages before either a positive or a negative value-added shock. In other words, the shocks in period 0 do not seem to be anticipated by wage changes. Second, as expected, a positive firm-level value-added shock is associated with an increase in average wages, and vice versa. Third, there are substantial differences in the way in which wages of U35 workers and O55 workers responded to value-added shocks. In the case of a 10-percent positive shock, the wages of O55 workers increased by 0.017 log points by the end of period 3, while the wages of U35 workers increased by only 0.003 log points. In the case of a 10-percent negative shock, the wages of U35 workers decreased by 0.005 log points by the end of period 3, while the wages of U55 workers decreased by only 0.003 log points.

In conclusion, the main takeaway is that O55 captured a larger share of the positive shocks and were exposed to a smaller share of the negative ones. This result is consistent with the idea that O55 workers were able to extract a larger portion of firm premiums because they had more bargaining power, compared with younger workers.
6 Empirical Evidence Outside of Italy

In this section, we use administrative data from Germany, as well as CPS data from the United States, to replicate the previous analysis on the Italian data. It should be noted that not everything can be replicated due to data limitations. For example, the whole analysis in Section 5 can be performed only using the Italian Social Security dataset. The German dataset has only a sample of establishments, which makes it impossible to account for all firm-to-firm transitions. Moreover, the U.S. dataset is only a representative survey, which does not allow us to identify coworkers.

6.1 Germany

Overall, the analysis of the German data paints the same picture that we obtained using the Italian Social Security dataset.

First, we find that U35 workers became less likely to reach the top of the wage distribution (Figure H1, Panel A). Specifically, their probability of being in the top quartile of the distribution of daily wages decreased by 13 percent between 1996 and 2017, while their probability of being in the bottom quartile increased by 16 percent. On the contrary, the probability of O55 workers of being in the bottom quartile decreased by 18 percent, while their probability of being in the second and third quartiles increased by 24 percent and 18 percent, respectively (Figure H1, Panel B). Differently from what we observed in Italy, O55 workers did not become more likely to be at the very top of the wage distribution, instead moving from the top and bottom tails toward the median.

Second, as we observed in Italy, most of the increase in the age wage gap stemmed from the ranking-shift component, rather than from changes in the average wages paid for different types of jobs (Equation (2)). The total-ranking-shift component accounted for 67 percent of the widening in the age wage gap in 2000, for 66 percent in 2010, and for 72 percent in 2019 (Figure H2, Panel A).

Third, most of the difference in log daily wages between U35 workers and O55 workers stemmed from within-firm factors (Figure H2, Panel B). For example, the latter accounted for 79 percent of the age wage gap in 2017. However, between-firm factors explained most of the growth in the age wage gap. In fact, the within-firm component increased by 0.03 log points between 1996 and 2017, while the between-firm component increased by 0.07 log points. This result matches the evidence from Italy, in which the primary source of growth in the age wage gap was within firms until 1995 and between firms from 2000 (Figure 5, Panel A).

Finally, we find that the ranking-shift component (Equation (2)) stemmed primarily from between-firm factors, although within-firm factors accounted for up to 46 percent in 2004.
Specifically, within-firm factors contributed to decrease the wages of U35 workers, while between-firm factors raised the wages of O55 workers (Figure H3, Panel B).

6.2 United States

The analysis with U.S. data is limited by the fact that we have only a representative sample of the population (the Merged Outgoing Rotation Groups of the CPS). However, all the tests that can be replicated lead to similar conclusions about the nature of the age wage gap.

First, younger workers became less likely to reach the top of the wage distribution, and vice versa for older workers (Figure H4). The probability of U35 workers of being in the top quartile of the distribution of weekly wages decreased by 17 percent between 1985 and 2019, while the probability of being at the bottom increased by 14 percent. Differently, the probability of O55 workers of being in the bottom quartile decreased by 7 percent, while the probability of being in the third and fourth quartiles increased by 6 percent and 1 percent, respectively.

Second, the ranking-shift component drove almost all the increase in the age wage gap: total ranking shift accounted for 75 percent of the widening in the age wage gap between O55 workers and U35 workers that took place between 1985 and 2019 (Figure H5).

7 Forces Behind the Widening of the Age Wage Gap

In this section, we discuss what mechanisms are consistent with the widening of the age wage gap.

7.1 Career Spillovers From Older Workers to Younger Workers

In this section, we show that the age wage gap increased more among workers employed by firms with more difficulties in adding higher-ranked jobs to their organization. These results are broadly consistent with the idea that the success of older workers slowed down the wage growth of their younger coworkers, generating negative career spillovers and leading to a widening in the age wage gap.

In a completely frictionless labor market (Baker, Gibbs, and Holmström, 1994), younger workers who are qualified to receive a promotion could never be blocked by the fact that older workers either stay longer in higher-ranked positions or receive higher wages. In fact, either their current firms would always have the option of adding a new higher-level job to the organization or other firms would intervene and poach the younger workers who deserve a promotion.

Two types of labor-market frictions are needed to generate negative career spillovers. First, firm separations need to be costly for the worker and/or the firm. The literature in
organizational economics offers numerous explanations about why turnover can come at a cost. For example, firms may backload wages toward the end of the worker’s careers in order to use future promotions as a motivational device and to dissuade early turnover (Ke, Li, and Powell, 2018). The productivity of a worker could be based on the composition of their current team and, therefore, may not be replicable in a different firm (Hamilton, Nickerson, and Owan, 2003). Moreover, the existence of firm-specific human capital may tie qualified workers to their current firms (Lazear, 2009; Gathmann and Schönberg, 2010). Or firms may incur substantial monetary costs associated with laying off workers (Bentolila and Bertola, 1990).\(^{27}\) Regardless of the specific mechanism that causes this friction, the consequence is that there is often a premium for staying longer at a firm.

Second, firms need to face constraints in adding higher-level positions to their organizations. There are multiple non-mutually-exclusive factors that can explain the existence of this constraint. For example, the average firm may have faced increasing financial difficulties in expanding its ranks, as indicated by the progressive decrease in labor productivity (Syverson, 2017) and GDP growth (Figure I1) that most high-income countries experienced in the last decades. Prior works have documented that economic conditions at the time of entry in the labor market have long-lasting effects (Kahn, 2010). Therefore, this trend plausibly impacted the careers of new entrants more negatively than those of seasoned incumbents. Moreover, the progressive aging of the workforce and the increase in the retirement age imply that older workers stayed in their higher-ranked positions for longer, further blocking promotions of younger workers (Bianchi et al., 2021).

In practice, the combination of these frictions imply that negative career spillovers should be more prominent among firms that are in a more mature stage of their life cycle.\(^{28}\) These firms, in fact, may not have either sufficient monetary resources or available managerial tasks to easily create new higher-ranked positions. Consistent with this hypothesis, we show that the age wage gap increased more within firms with limited career opportunities, that is, with more challenges to adding higher-ranked jobs. The age wage gap increased more in firms that (i) experienced below-median growth in employment between 1985 and 2019, (ii) were at least ten years old, and (iii) employed more workers (Table I1, Panels A-C). Most of these differences are large in magnitude and statistically significant at the 1 percent. Finally, we find evidence suggesting that the number of firms with limited career opportunities increased over time, indicating that these constraints became more widespread in the economy: the

\(^{27}\)These four examples are not an exhaustive list of plausible explanations. In fact, our analysis does not need to pick one specific mechanism either within or outside this short list, as long as there is a growing amount of theoretical and empirical evidence highlighting the importance of this broad kind of friction in the labor markets.

\(^{28}\)This hypothesis is consistent with the theoretical framework in Bennett and Levinthal (2017).
mean firm age increased by 35 percent from 11.9 years in 1985 to 16.1 years in 2019 (Figure I2).

In short, we hypothesize that frictions in firm separations and an increasing difficulty in creating higher-ranked jobs prevented firms from redistributing career opportunities from older workers to younger workers. In the internal labor markets, this situation created opposite wage trends. Older workers kept accumulating tenure at the top of the wage distribution, enjoying the rents associated with their positions for longer. Younger workers experienced a much lower wage growth, due to their increasing difficulty in reaching the top of the job ladder.

In addition to experiencing slower careers in the internal labor markets, younger workers could have decided to find better opportunities in the external labor market even if they had to incur a cost associated with turnover. Our data confirm that younger workers became increasingly more likely to have fragmented careers. If we exclude the peaks at minimum retirement age, the share of older workers with a turnover event either stayed constant or decreased over time (Figure I3). For example, among workers who were 60 years old, the share with a turnover event decreased from 35 percent in 1985 to 15 percent in 2019. Younger workers experienced the opposite trend. For example, the share of 25-year-olds with a turnover event increased from 25 percent in 1985 to 52 percent in 2019. Interestingly, this increase in turnover may have been partially driven by the matching between younger workers and firms. In fact, we find that U35 workers became more likely to work for firms with higher turnover rate, while O55 workers did not follow the same trend (Figure I4).

7.2 Education and Job Experience

As we already discussed in Section 2.3, the increase in the age wage gap is robust to controlling for changes in several observable characteristics: country of birth, type of contract, gender, sector, province of residence, and improvements in health. We did not control for education because this information is available in the Italian Social Security data only for recent years and younger workers. In this section, we leverage several pieces of evidence to argue that education and experience cannot account for a significant portion of the increase in the age wage gap.

First, from a theoretical standpoint, it is not likely that the recent trends in education were consistent with the widening of the age wage gap. In Italy, university completion increased more, albeit slightly, among younger cohorts (Figure I5). Therefore, the higher returns associated with college education should have pushed the wages of younger workers

29 This finding is not due to censoring of firm age at the beginning of the sample. For each firm, we know the foundation year even when it predates the availability of Social Security data.
closer to those of older workers, rather than farer apart. Using survey data collected by the Bank of Italy, Rosolia and Torrini (2007) confirms that the trend in wages of younger and older workers are not significantly affected by changes in education across cohorts and over time.

Second, we show that the increase in the age wage gap was large in magnitude also in municipalities that are farer from universities and, therefore, whose younger residents were less exposed to the increasing trend in college education. For example, the age wage gap increased by 0.14 log points among workers whose birthplace is in the top quartile of distances from an Italian university (Figure I6, Panel A). Similarly, it increased by 0.11 log points among workers whose workplace is the top quartile, although most of the increase happened after 2010 (Figure I6, Panel B).

Third, we use the German data, which include information about high-school completion, to show that the German results are not substantially affected by controlling for education. In fact, the age wage gap widened among all workers, regardless of their education level. It increased by 0.09 log points for workers who did not attain a high-school diploma and by 0.10 log points for workers who successfully completed their high-school studies (Figure I7).

Although our results may not be driven by changes in the returns to education, they may be related to changes in the returns to job experience. Specifically, prior works showed that the productivity of inventors and entrepreneurs started peaking at a higher age over time (Jones, 2009; Azoulay et al., 2020). For these professions, the returns to experience increased mainly because tasks became more complex and started requiring higher skills. This increased “burden of knowledge” pushed more workers to lengthen their investment in education, reducing their on-the-job-experience and postponing career advancements.

At first glance, the fact that the age wage gap increased over time is consistent with this mechanism. We can show this point more directly by plotting the average weekly wage by years of experience both in 1985 and 2019 (Figure I8, Panel A). Weekly wages started plateauing around 15 years of experience in 1985, while they kept increasing until 23 years of experience in 2019. In the rest of this section, we investigate whether returns to experience can account for the general widening of the age wage gap.

First, our results do not support the hypothesis that recent education trends reduced the labor-market experience of younger workers. In fact, we find that the age wage gap between O55 workers and U35 workers substantially increased even when we directly control for how many years U35 workers spent in the labor market (Table I1, Panel D). Moreover, the age wage gap increased with the labor-market tenure of U35 workers until twelve years

30The German data allow us to distinguish only between individuals with and without a high-school diploma.
of experience: it increased by 0.14 log points when we compare O55 workers to U35 workers with one year of experience, and by 0.22 log points when we compare O55 workers to U35 workers with twelve years of experience. Therefore, the widening of the age wage gap was not driven by an increasing number of U35 workers who had less on-the-job experience due to longer investments in education.

Second, we already established that O55 workers did not become more likely to be at the very top of the wage distribution (Figure C2 in Section 3.1). Therefore, if returns to experience increased over time, they must have increased nonlinearly along the wage distribution. In other words, experience could have become more valuable for most jobs, but not for the top management positions. However, if returns to experience drove the widening in the age wage gap below the 95th percentile, it is hard to hypothesize why they did not do the same in the top 5th percentile.

Third, we test whether a change in the production function increased the importance of experienced workers. We divide economic sectors in two groups based on how much they relied on experience at baseline. Specifically, we compute the sector-level share of workers in the top decile of wages with at most five years of experience between 1985 and 1989. Then, we compute the trend in the age wage gap distinguishing between the sectors with a share of low-experience and high-wage workers in the bottom quartile of the distribution and the rest of the economy. The idea is that an increase in the importance of experienced workers should have been less prominent within sectors that were already relying heavily on job experience at the beginning of the period under consideration, and vice versa. However, the data indicate that the age wage gap increased more in sectors with high reliance on experience at baseline (0.4 log points; Figure I8, Panel B).

In short, certain high-skill professionals, such as inventors and entrepreneurs, experienced an increase in the burden of knowledge that postponed the peak in their productivity and wages. However, we did not find strong evidence in favor of the hypothesis that an increase in the returns to job experience widened the age wage gap for most jobs in the economy.

7.3 Other Factors

In this section, we discuss three remaining factors. First, the progressive tightening of the eligibility requirements for public pensions may have changed the selection of older workers, forcing more high-wage individuals to stay longer in the labor market. However, prior works have documented that the workers who retire early tend to be negative selected with respect to their labor-market outcomes and health (Munnell, Sanzenbacher, and Rutledge, 2018; 31

31The four sectors with the highest share of low-experience and high-wage workers are finance, mining, IT, and air transport.
Kolsrud et al., 2021). Therefore, the pension reforms that increased the minimum retirement age should have created a downward pressure on the wage growth of older workers, reducing the age wage gap.

We can further show this point with the Social Security data by estimating the age wage gap between U35 male workers and male workers who were between 56 years old and 60 years old, rather than considering all O55 workers (Table I1, Panel E). The rationale for this test is that the retirement age for most men was at least 60 years old even at the beginning of the sample. Even when we focus on this more limited group of older workers, whose selection should not have changed with tighter pension eligibility, we find that the age wage gap substantially increased between 1985 and 2019 (0.18 log points).

Second, as discussed earlier, the increase in the supply of older workers cannot explain the observed trend in wages. If anything, the ever increasing number of older workers, combined with the assumption of imperfect substitutability between younger and older workers, should have depressed growth in the wages of older workers, narrowing the age wage gap.

Third, skill-biased technological change (SBTC) has been considered responsible for widening the wage gap between high-skill and low-skill workers. However, it is not a good candidate to explain the increase in the age wage gap. As we discussed in Section 7.2, in the last decades, younger workers became slightly more educated than older workers. Therefore, SBCT may be at best a second-order factor because the gap in skill level between younger and older workers did not change significantly. Moreover, it is plausible to assume that younger workers tend to be more proficient at using modern technologies, compared with their older coworkers. So, if SBCT had a minor effect, it should have bolstered the wage growth of the more tech-savvy younger workers, slightly narrowing the age wage gap.

8 Conclusions

This paper uses extensive administrative data from Italy and Germany on 38 million workers and 3.7 million firms to show that the wages of older workers have been growing at a much faster rate than the wages of younger workers for at least the last three decades. The wage gap between workers who were at least 55 years old and workers who were less than 35 years old increased by 0.19 log points in Italy between 1985 and 2019 and by 0.10 log points in Germany between 1996 and 2017. We also use CPS survey data to show that the wage gap

32This assumption is supported by the findings of Bianchi et al. (2021) and Boeri, Garibaldi, and Moen (2017).

33A related question is why this factor may have widened the age wage gap when the “Baby-Boom” cohort entered the labor market (Freeman, 1979). Most high-income countries experienced record-high GDP growth during the first twenty years after the end of WWII. Therefore, it is plausible to assume that not many firms were facing constraints in adding higher-ranked slots to their organizations (as discussed in Section 7.1)
between older and younger workers increased by 0.10 log points in the United States between 1985 and 2019.

Our analysis reveals three main findings about the widening of the age wage gap. First, most of the increase in the age wage gap came from the increasing difficulty of younger workers to reach the top of the wage distribution, rather than from changes in the wages paid for different jobs. Second, the slowdown in the careers of younger workers happened both in the internal and the external labor market. Third, an AKM wage model indicates that the bargaining power of older workers within firms and the sorting of younger workers into lower-wage firms accounted for most of the difference in the appropriation of firm premiums between younger and older workers.

Taken together, these results point to the importance of firms and their personnel policies in explaining the different wage trajectory of younger workers and older workers. In a frictional labor market in which separations are costly and firms cannot always add higher-ranked jobs to their ranks, a progressive slowdown in firm productivity and longer careers may have allowed older workers to stay in their top positions for longer and to appropriate an increasing share of firm premiums. Moreover, their presence slowed down the careers of their younger coworkers, who experienced lower wage growth and higher turnover.

To conclude, labor markets experienced a major transfer of wages from younger workers to older workers. Future research should investigate whether backloading wages at the end of working careers may have permanent consequences on the life of workers. For example, lower earnings earlier in the life cycle may prevent some workers from purchasing durables, due to the fact that workers cannot use future wages as collateral. Moreover, lower earnings at career start may prevent some workers from making personal choices that cannot easily be postponed to the end of the life cycle, such as having children.

References

Figures and Tables

Figure 1: Aging of Workers

Panel A: Mean age

Panel B: $\Delta_{2019-1985}$ by age bins

Notes: Panel A plots the mean age of Italian workers by year. Panel B plots the percentage-point difference in the share of workers in each age bin between 1985 and 2019. For example, “+5%” indicates that the share of workers in that age bin increased by 5 percentage points between 1985 and 2019. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).

Figure 2: Age Gap in Weekly Wages

Panel A: Gap in log mean and median wages

Panel B: Age profiles (mean wages)

Notes: Panel A plots the gap between the log weekly wages of O55 workers and the log weekly wages of U35 workers between 1985 and 2019 for both mean and median wages. Panel B plots the mean real weekly wages (not logged) by age in 1985 and 2019. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Notes: These graphs show the changes in the shares of U35 and O55 workers in different parts of the distribution of weekly wages. Specifically, for each year, Panel A shows the ratio between the share of U35 workers in each quartile and the share of U35 in the same quartile in 1985. Panel B plots the percentage-point difference in the share of U35 workers in each vingintile between 1985 and 2019. For example, “0.05” indicates that the share of U35 workers in that vingintile increased by 5 percentage points between 1985 and 2019. Panel C and Panel D plot the same information for O55 workers. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Figure 4: Decomposition of Change in Weekly Wages

Panel A: 2019-1985 for all ages
Panel B: O55 workers - U35 workers over time

Notes: Panel A plots the change in mean log weekly wages (decomposed into the three components of Equation (1)) between 1985 and 2019 for different age groups. Panel B plots the change in mean log weekly wages between O55 workers and U35 workers, as well as between 1985 and year $t \in [1986, 2019]$. This double difference is further decomposed into three components, following Equation (2). Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Figure 5: Difference in Weekly Wages Between and Within Firms

Panel A: O55 workers - U35 workers over time Panel B: O55 workers - each age, 2019-1985

Notes: Panel A plots the difference in log weekly wages (decomposed into the two components of Equation (3)) between O55 workers and U35 workers for each year between 1985 and 2019. “Between firms” computes the difference in average log weekly wages at the firm level. “Within firms” computes the difference in the average deviation of individual workers’ weekly wages from the firm averages. Panel B plots the difference in log weekly wages between O55 workers and individual age groups and between 1985 and 2019. Again, this difference is decomposed into the same two components (Equation (3)). Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Notes: Panel A decomposes the total-ranking-shift change in log weekly wages (Equation (1)) between 1985 and 2019 for U35 workers and O55 workers, separately. Panel B decomposes the total-ranking-shift change in log weekly wages between O55 workers and U35 workers and between year t and 1985. *Sources:* In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Table 1: Summary Statistics—Panel

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (1)</td>
<td>Std. dev. (2)</td>
<td>Mean (3)</td>
</tr>
<tr>
<td>Age</td>
<td>38.04</td>
<td>11.01</td>
</tr>
<tr>
<td>Male</td>
<td>0.69</td>
<td>0.46</td>
</tr>
<tr>
<td>Years in labor market</td>
<td>17.56</td>
<td>11.34</td>
</tr>
<tr>
<td>At least high school</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Temporary contract</td>
<td>0.06</td>
<td>0.25</td>
</tr>
<tr>
<td>Foreign-born</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.37</td>
<td>0.48</td>
</tr>
<tr>
<td>Services</td>
<td>0.32</td>
<td>0.46</td>
</tr>
<tr>
<td>Construction</td>
<td>0.08</td>
<td>0.28</td>
</tr>
<tr>
<td>Daily wages</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Weekly wages</td>
<td>549.20</td>
<td>391.52</td>
</tr>
<tr>
<td>Yearly earnings</td>
<td>26,660.32</td>
<td>18,635.26</td>
</tr>
<tr>
<td>N. observations</td>
<td>312,065,728</td>
<td>35,092,712</td>
</tr>
<tr>
<td>N. workers</td>
<td>28,911,242</td>
<td>8,865,294</td>
</tr>
<tr>
<td>N. firms</td>
<td>3,532,905</td>
<td>127,782</td>
</tr>
</tbody>
</table>

Notes: This table show the worker-level summary statistics for the three main datasets that are available for this study. Sources for Italy: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Database UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS). Sources for Germany: The German data come from the LIAB Linked Employer-Employee Dataset provided by the Institute for Employment Research. Details on the construction of these samples are in Appendix B.2. Sources for United States: The USA data come from the Merged Outgoing Rotation Groups (MORG) of the Current Population Survey (CPS), which we accessed from the National Bureau of Economic Research (NBER) at https://data.nber.org/morg/annual/. Details on the construction of these samples are in Appendix B.3.

Table 2: Decomposition of Double Difference in Firm Rents

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
<td>(12)</td>
<td></td>
</tr>
<tr>
<td>∆t−1985 Gap (O55-U35) in log weekly wage</td>
<td>0.143</td>
<td>0.009</td>
<td>0.056</td>
<td>0.056</td>
<td>0.155</td>
<td>0.160</td>
<td>0.147</td>
<td>0.174</td>
<td>0.144</td>
<td>0.133</td>
<td>0.129</td>
<td>0.125</td>
</tr>
<tr>
<td>∆t−1985 Gap (O55-U35) in log firm rents (%)</td>
<td>0.685</td>
<td>0.093</td>
<td>0.270</td>
<td>0.442</td>
<td>0.690</td>
<td>0.896</td>
<td>0.898</td>
<td>0.790</td>
<td>0.698</td>
<td>0.865</td>
<td>0.576</td>
<td>0.419</td>
</tr>
<tr>
<td>Decomposition 1: Sorting with U35 effects and bargaining with O55 distribution</td>
<td></td>
</tr>
<tr>
<td>∆t−1985 Bargaining (log)</td>
<td>0.045</td>
<td>0.000</td>
<td>0.017</td>
<td>0.020</td>
<td>0.096</td>
<td>0.110</td>
<td>0.114</td>
<td>0.098</td>
<td>0.084</td>
<td>0.045</td>
<td>0.022</td>
<td>0.057</td>
</tr>
<tr>
<td>∆t−1985 Bargaining (% of ∆ in firm rents)</td>
<td>0.794</td>
<td>1.198</td>
<td>0.865</td>
<td>0.719</td>
<td>0.760</td>
<td>0.761</td>
<td>0.790</td>
<td>0.528</td>
<td>0.347</td>
<td>0.104</td>
<td>0.146</td>
<td>0.013</td>
</tr>
<tr>
<td>∆t−1985 Sorting (log)</td>
<td>0.023</td>
<td>0.000</td>
<td>0.000</td>
<td>0.006</td>
<td>0.011</td>
<td>0.014</td>
<td>0.018</td>
<td>0.022</td>
<td>0.061</td>
<td>0.094</td>
<td>0.113</td>
<td>0.145</td>
</tr>
<tr>
<td>∆t−1985 Sorting (% of ∆ in firm rents)</td>
<td>0.206</td>
<td>-0.198</td>
<td>0.135</td>
<td>0.281</td>
<td>0.168</td>
<td>0.036</td>
<td>0.124</td>
<td>0.300</td>
<td>0.171</td>
<td>0.327</td>
<td>0.147</td>
<td>0.267</td>
</tr>
</tbody>
</table>

Notes: This table shows the decomposition of the double difference in firm rents (difference over time and between U35 worker and O55 workers) into a bargaining component and a sorting component. Decomposition 1 follows Equation (6), while decomposition 2 follows Equation (7). Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Online Appendix

A Additional Evidence on Aging of Workforce and Age Wage Gap

Figure A1: Share of Total Wage Bill

Notes: These graphs show the share of the total wage bill earned by workers in different age bins. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).

Figure A2: Age Gap in Yearly Earnings

Panel A: Gap in log mean and median earnings Panel B: Age profiles (mean earnings)

Notes: Panel A plots the gap between the log yearly earnings of O55 workers and the log yearly earnings of U35 workers between 1985 and 2019 for both mean and median earnings. Panel B plots the mean real yearly earnings (not logged) by age in 1985 and 2019. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Notes: Panel A plots the age gap in mean log weekly wages between O55 workers and U35 workers for domestic workers and for workers with open-ended contracts. Panel B plots the age wage gap for men and for full-time equivalent workers. Panel C plots the age wage gap for workers who are not in physically demanding jobs according to the Italian law and for workers who are in low-injury sectors according to the INPS data. Specifically, the occupations that are physically demanding (“lavori usuranti” in Italian) are defined by a decree of the Ministry of Labor (https://www.gazzettaufficiale.it/eli/id/2018/02/26/18A01427/sg). There are more details about this variable in the notes of Table A3. Moreover, we define the low-injury sectors as the 3-digit (NACE Rev. 2) sectors with a share of the wage bill paid for injury and sick leaves below the top quartile. Data on work leaves are available only starting from 2005. In Panel D, we first regress log weekly wages on the previous worker-level characteristics (domestic vs. foreign-born, open-ended vs. temporary contract, men vs. women, high-injury job vs. low-injury job), as well as province of residence. In a second set of regressions, we also control for 2-digit-sector fixed effects. Both sets of regressions are estimated separately in each year to allow the coefficients to change over time. Then, we use the estimated residuals from these wage regressions to compute the age wage gap. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Table A1: Summary Statistics—Labor Earnings by Age

<table>
<thead>
<tr>
<th>Year</th>
<th>Age group</th>
<th>Mean</th>
<th>P10</th>
<th>P25</th>
<th>Median</th>
<th>P75</th>
<th>P90</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>1985</td>
<td>< 35</td>
<td>5.88</td>
<td>5.37</td>
<td>5.73</td>
<td>5.92</td>
<td>6.10</td>
<td>6.30</td>
<td>3,962,051</td>
</tr>
<tr>
<td>1985</td>
<td>> 55</td>
<td>6.07</td>
<td>5.41</td>
<td>5.84</td>
<td>6.05</td>
<td>6.32</td>
<td>6.73</td>
<td>391,133</td>
</tr>
<tr>
<td>1985</td>
<td>All</td>
<td>6.00</td>
<td>5.47</td>
<td>5.81</td>
<td>6.01</td>
<td>6.22</td>
<td>6.49</td>
<td>8,046,042</td>
</tr>
<tr>
<td>1985</td>
<td>O55 - U35</td>
<td>0.19</td>
<td>0.04</td>
<td>0.11</td>
<td>0.13</td>
<td>0.22</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>< 35</td>
<td>6.02</td>
<td>5.62</td>
<td>5.87</td>
<td>6.05</td>
<td>6.24</td>
<td>6.48</td>
<td>2,582,209</td>
</tr>
<tr>
<td>2019</td>
<td>> 55</td>
<td>6.39</td>
<td>5.86</td>
<td>6.08</td>
<td>6.32</td>
<td>6.71</td>
<td>7.09</td>
<td>1,371,845</td>
</tr>
<tr>
<td>2019</td>
<td>All</td>
<td>6.25</td>
<td>5.80</td>
<td>5.99</td>
<td>6.20</td>
<td>6.49</td>
<td>6.84</td>
<td>9,518,819</td>
</tr>
<tr>
<td>2019</td>
<td>O55 - U35</td>
<td>0.37</td>
<td>0.24</td>
<td>0.21</td>
<td>0.27</td>
<td>0.47</td>
<td>0.61</td>
<td></td>
</tr>
</tbody>
</table>

Panel A: Log weekly wages

<table>
<thead>
<tr>
<th>Year</th>
<th>Age group</th>
<th>Mean</th>
<th>P10</th>
<th>P25</th>
<th>Median</th>
<th>P75</th>
<th>P90</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>1985</td>
<td>< 35</td>
<td>9.69</td>
<td>8.97</td>
<td>9.44</td>
<td>9.81</td>
<td>10.02</td>
<td>10.23</td>
<td>3,962,051</td>
</tr>
<tr>
<td>1985</td>
<td>All</td>
<td>9.84</td>
<td>9.11</td>
<td>9.61</td>
<td>9.91</td>
<td>10.15</td>
<td>10.43</td>
<td>8,046,042</td>
</tr>
<tr>
<td>1985</td>
<td>O55 - U35</td>
<td>0.24</td>
<td>0.13</td>
<td>0.21</td>
<td>0.16</td>
<td>0.23</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>< 35</td>
<td>9.82</td>
<td>9.04</td>
<td>9.60</td>
<td>9.95</td>
<td>10.16</td>
<td>10.40</td>
<td>2,582,209</td>
</tr>
<tr>
<td>2019</td>
<td>> 55</td>
<td>10.26</td>
<td>9.58</td>
<td>9.97</td>
<td>10.25</td>
<td>10.64</td>
<td>11.01</td>
<td>1,371,845</td>
</tr>
<tr>
<td>2019</td>
<td>All</td>
<td>10.10</td>
<td>9.41</td>
<td>9.86</td>
<td>10.12</td>
<td>10.42</td>
<td>10.77</td>
<td>9,518,819</td>
</tr>
<tr>
<td>2019</td>
<td>O55 - U35</td>
<td>0.44</td>
<td>0.54</td>
<td>0.37</td>
<td>0.30</td>
<td>0.48</td>
<td>0.61</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Log yearly earnings

Notes: This table shows log weekly wages (Panel A) and yearly earnings (Panel B) (i) at different points of their distributions, (ii) in 1985 and 2019, and (iii) for different age groups. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
<table>
<thead>
<tr>
<th>Age group</th>
<th>Foreign-born workers</th>
<th>Temporary workers</th>
<th>Part-time workers</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
</tbody>
</table>

Panel A: Shares

<table>
<thead>
<tr>
<th>Share</th>
<th>Share in 1985</th>
<th>Share in 2019</th>
<th>(\Delta_{2019-1985}) Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 35</td>
<td>0.010</td>
<td>0.164</td>
<td>0.154</td>
</tr>
<tr>
<td>> 55</td>
<td>0.006</td>
<td>0.074</td>
<td>0.068</td>
</tr>
</tbody>
</table>

Panel B: Gaps in mean log weekly wages

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>-0.013</td>
<td>-0.242</td>
<td>-0.229</td>
</tr>
</tbody>
</table>

Notes: Panel A shows the share of each subgroup within two age groups (U35 workers and O55 workers) and in two years (1985 and 2019). In this case “0.01” for foreign-born workers and U35 workers would indicate that 10 percent of U35 workers in that year were born outside of Italy. The share of workers with temporary contracts was equal to zero in 1985 because temporary contracts were introduced only in 1998 (d.lgs. 280/97 and 468/97). Panel B shows the gap in log mean weekly wages between these different subgroups of workers and their complement subsets. In the case of foreign-born workers, the gap is between foreign-born and domestic workers. In the case of temporary workers, the gap is between workers with temporary contracts and workers with open-ended contracts. In the case of part-time workers, the gap in between part-time and full-time workers. In the case of women, the gap is between women and men. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENTS, Istituto Nazionale della Previdenza Sociale (INPS).
Table A3: List of Physically Demanding Jobs

<table>
<thead>
<tr>
<th>Job classification</th>
<th>Istat job code</th>
<th>Sector code (NACE Rev. 2)</th>
<th>Sector classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operai dell’industria estrattiva, dell’edilizia e della manutenzione degli edifici</td>
<td>6.1 - 8.4.1 - 8.4.2</td>
<td>05-06-07-08-09</td>
<td>Estrazione di minerali da cave e miniere</td>
</tr>
<tr>
<td>Conduttori di gru o di macchinari mobili per la perforazione nelle costruzioni</td>
<td>7.4.4.2 - 7.4.4.3 - 7.4.4.4</td>
<td>41.2-42.1-42.2-42.9-43.1-43.2-43.3-43.9</td>
<td>Costruzioni economico sviluppo di progetti immobiliari</td>
</tr>
<tr>
<td>Concioni di pelli e di pellicce</td>
<td>6.5.4.1</td>
<td>15.1-15.2-14.1-14.2</td>
<td>Fabbricazione di articoli in pelle e simili + Confezione di articoli in pelle e pelliccia</td>
</tr>
<tr>
<td>Conduttori di convogli ferroviari e personale viaggiante</td>
<td>7.4.1.1 e personale viaggiante</td>
<td>49.1-49.2</td>
<td>Trasporto ferroviario</td>
</tr>
<tr>
<td>Conduttori di mezzi pesanti e camion</td>
<td>7.4.2.3</td>
<td>49.3-49.4-49.5-49.6-86.1</td>
<td>Trasporto terrestre + attività di corriere</td>
</tr>
<tr>
<td>Personale delle professioni sanitarie infermieristiche ed ostetriche ospedalieri con lavoro organizzato in turni</td>
<td>5.4.4.3</td>
<td>87.1-87.2-87.387.9-88.1-88.9</td>
<td>Servizi di assistenza sociale residenziale e non residenziale</td>
</tr>
<tr>
<td>Insegnanti della scuola dell’infanzia e educatori degli asili nido</td>
<td>2.6.4.2</td>
<td>85.1</td>
<td>Istruzione prescolastica</td>
</tr>
<tr>
<td>Facchini, addetti allo spostamento merci e assimilati</td>
<td>8.1.3.1</td>
<td>52.1-52.2</td>
<td>Magazzinaggio e attività di supporto ai trasporti</td>
</tr>
<tr>
<td>Personale non qualificato addetto ai servizi di pulizia</td>
<td>8.1.4.1 - 8.1.4.3</td>
<td>97.8-81.2</td>
<td>Attività di pulizia + colf</td>
</tr>
<tr>
<td>Operatori ecologici e altri raccoglitori e separatori di rifiuti</td>
<td>8.1.4.5</td>
<td>38.1-38.2-38.3</td>
<td>Raccolta e smaltimento rifiuti</td>
</tr>
<tr>
<td>Operai dell’agricoltura, zootecnia e pesca</td>
<td>6.4.1 - 6.4.2 - 6.4.3 - 8.3.1 - 8.3.2</td>
<td>01-02-03</td>
<td>Agricoltura, silvicoltura e pesca</td>
</tr>
<tr>
<td>Pescatori della pesca costiera, in acque interne, in alto mare, dipendenti o soci di cooperative</td>
<td>6.4.5.2 - 6.4.5.3</td>
<td>03</td>
<td>Pesca</td>
</tr>
<tr>
<td>Siderurgici di prima e seconda fusione e lavoratori del vetro addetti a lavori ad alte temperature non già riconosciuti come usuranti da cui al dlgs n. 67/2011</td>
<td>7.1.2.1 - 7.1.2.2 - 7.1.2.3 - 7.1.3</td>
<td>24.1-24.2-24.3-24.4-24.5-23.1</td>
<td>Siderurgia e fabbricazione di vetro</td>
</tr>
<tr>
<td>Marittimi imbarcati a bordo e personale viaggiante dei trasporti marini ed acque interne</td>
<td>7.4.5 e personale viaggiante</td>
<td>50.1-50.2-50.3-50.4</td>
<td>Trasporto marittimo e per vie d’acqua</td>
</tr>
</tbody>
</table>

Notes: The law (decree of the Ministry of Labor available at https://www.gazzettaufficiale.it/eli/id/2018/02/26/18A01427/sg) defines physically demanding jobs (“lavori usuranti”) using the classification of occupations by the Italian Institute of Statistics (columns 1 and 2). We created a crosswalk from the occupation codes to the sector codes (NACE Rev. 2 in columns 3 and 4) to link information on physically demanding jobs to the Social Security data.
B Data Appendix

B.1 Italian Data

The data on the Italian labor market are available from 1985 to 2019 and are provided by the Italian Social Security Institute (INPS). This dataset consists of matched employer–employee records for the whole population of private-sector, nonagricultural firms with at least one salaried employee. The dataset combines individual-level information about workers, such as age and other demographic characteristics, wage, type of contract (full-time vs. part-time, open-ended vs. temporary), with information about the firm, such as sector, location, and age.

It represents a comprehensive summary of all the labor-market events that happened during a calendar year. For example, for the workers who moved to a different firm, the dataset display two rows in the year of their move: one describes the contract with the “old” firm they left, while the other describes the contract with the “new” firm they joined. Similarly, for workers who received major internal promotions, the dataset display two rows in the year of their promotions: one describes the contract with the “old” pre-promotion position, while the other describes the contract with the “new” post-promotion position.

For the purpose of the analysis, we need to reduce this very rich dataset with multiple worker-year observations to a more streamlined dataset with unique worker-year pairings. As it is common in this branch of the literature, for workers with multiple working spells in a single year, we keep the information associated with the spell with the highest wage. For example, Kline, Saggio, and Sølvsten (2020) follows the same strategy with similar data.

Moreover, we restrict each year of data to workers who (i) were over 16 years old, (ii) worked at least six months, (iii) earned positive wages, and (iv) did not retire within that year. We impose these restrictions to weed out workers with very short-lived job spells. For the same reason, unless otherwise specified, our analysis focuses on workers with full-time contracts. However, we include part-time workers in a robustness check in Section 2.3.

Next, we create two main wage variables. First, we create the total yearly labor earnings by summing the wages of all working spells associated with each worker in a year. In other words, although we process the data by retaining only the spell with the highest wage, the yearly earnings pool information from all working spells that are available in the raw employer-employee data. Second, we create a variable that is closer to pay rates: weekly wages. We compute them by dividing the labor earnings by the number of weeks in which each employee worked. This variable uses information that comes exclusively from the working spell that we retained, that is, the spell with the highest wage during the year.

All measures of labor earnings, as well as any other monetary variable used in the analysis, are expressed in 2015 euros using the conversion tables prepared by the OECD. Moreover, unlike many administrative data providers in other countries, INPS does not winsorize earnings above the Social Security earnings maximum. The consequence is that the distribution of wages tend to be fairly skewed, due to the presence of extreme outliers. For this reason, we winsorized both weekly wages and yearly earnings at the 99.9th percentile. Even after this winsorization, yearly earnings have very low values on the left tail of their distributions, indicating that our previous process was not able to weed out all short and inconsequential working spells. For this reason, we cap the minimum of yearly earnings at €3,000 in real terms.

B.2 German Data

The data on the German labor market are available between 1996 and 2017 and are provided by the Research Data Centre (FDZ) of the Federal Employment Agency (BA) at the Institute for Employment Research (IAB).

We employ the Linked Employer-Employee Data from the LIAB Cross-Sectional Model 2 (LIAB). This dataset combines information from the IAB Establishment Panel with information from the Integrated Employment Biographies (IEB). The former is an annual representative survey of establishments, while the latter contains information on all workers subject to Social Security taxation. The LIAB dataset matches the individual biographies from the IEB to the sample of surveyed establishments in the IAB Establishment Panel.

The LIAB has two important characteristics. First, information on employment and wages is available every year at the single reference date of June 30th. Therefore, the data represents a static snapshot of the labor market, rather than a comprehensive summary of all labor-market events. Second, although the data is available starting in 1993, the IAB Establishment Panel covers both East and West Germany starting only in 1996. For this reason, we focus on the period between 1996 and 2017 to avoid creating inconsistent time series.

For the purpose of our analysis, we have access to the variables coming from the Employee-History (BeH) module, which collects annual and end-of-employment notifications submitted to the Social Security Agencies about employees covered by social security and employees in marginal part-time employment. Information on temporary contract workers is available only starting in 2011. For this reason, we do not report this variable in Table 1.

To create a dataset that is as close as possible to the Italian one, we select employees who (i) were between 16 years old and 75 years old, (ii) had a full-time contract, and (iii) earned strictly positive wages. These restrictions reduce the sample from 12,451,266 workers to 8,865,294 workers.

As we discussed in Section B.1 for the Italian data, workers may appear more than once in a given year if they worked for more than one firm. We reduce the data to a single observation per worker in each year using the following procedure. For each worker, we compute earnings in a given job spell multiplying the daily wage by the number of tenure days accumulated in the first semester of the year. We then select for each worker the job spell with the highest earnings in the year, and we attribute to the worker the daily wage earned in that spell. It should be noted that nominal earnings are top-coded at the Social Security earnings maximum, the threshold over which contributions to the Social Security are not owed. The cap varies from year to year, but is usually close to the 95th percentile. Finally, daily wages are expressed in 2015 euros using the conversion tables prepared by the OECD.

B.3 Data from Other Countries

In this section, we provide more information about the survey data and aggregate statistics that we collected to measure the age wage gap in more countries.

For the United States, we leverage microdata from the Current Population Survey (CPS). Specifically, we use the Merged Outgoing Rotation Groups (MORG) of the CPS, which are “extracts of
the Basic Monthly Data during the household’s fourth and eighth month in the survey, when usual weekly hours/earnings are asked.” We accessed these data from the National Bureau of Economic Research (NBER) at https://data.nber.org/morg/annual/. We impose the following restrictions to the sample in order to match as much as possible the characteristics of the Italian INPS data. First, we keep observations for workers employed full time by private organizations. Second, we keep observations from workers who were at least 16 years old. Third, we drop observations with imputed wages, as recommended by Hirsch and Schumacher (2004). The wage variable is the log of mean “weekly earnings,” which is defined as earnings before taxes and other deductions. It includes any overtime pay, commissions, or tips usually received. In Figure B1 (Panel B), the younger workers are between 16 years old and 34 years old, while the older workers are above 55 years old. This classification exactly matches the one we implemented on the Italian data.

For the other countries, we only have aggregate statistics on wages of younger and older workers. For the United Kingdom, the data come from the Annual Survey of Hours and Earnings, which we accessed from the UK Parliament’s House of Commons Library at https://commonslibrary.parliament.uk/research-briefings/cbp-8456/. The wage variable is the log of median “weekly pay,” which is defined as the pay received from the employer’s payroll for the pay period. The younger workers are between 22 years old and 29 years old, while the older workers are between 50 years old and 59 years old. For Denmark, the data come from StatBank Denmark, the statistical database maintained by the central authority of statistics in Denmark, which we accessed at https://statbank.dk/INDKP201. The wage variable is the log of mean “wages and salaries.” The younger workers are between 30 years old and 34 years old, while the older workers are between 55 years old and 59 years old. For Spain, the data come from Instituto Nacional de Estadística, the Spanish Statistical Office, which we accessed at https://www.ine.es/dynt3/invbse/en/index.htm?padre=2129&capsel=2429#. The wage variable is the log of mean “annual net income.” The younger workers are between 16 years old and 29 years old, while the older workers are between 45 years old and 64 years old. For Canada, the data come from the Survey of Labour and Income Dynamics of Statistics Canada, which we accessed at https://tinyurl.com/6mvxd23. The wage variable is the log of mean “wages, salaries, and commissions.” The younger workers are between 25 years old and 34 years old, while the older workers are between 55 years old and 64 years old.
Figure B1: Age Wage Gap in Different Countries

Panel A: Administrative data

Panel B: Surveys and Aggregate Statistics

Notes: These graphs show that the gap in wages between younger and older workers in different countries. Panel A leverages administrative data from Germany. The German data come from the LIAB Linked Employer-Employee Dataset provided by the Institute for Employment Research. Details on the construction of these samples are in Appendix B.2. Panel B leverages data from surveys and aggregate statistics. The USA data come from the Merged Outgoing Rotation Groups (MORG) of the Current Population Survey (CPS), which we accessed from the National Bureau of Economic Research (NBER) at https://data.nber.org/morg/annual/. The wage variable is the mean of log “weekly earnings,” which is defined as earnings before taxes and other deductions. It includes any overtime pay, commissions, or tips received. The younger workers are between 16 years old and 34 years old, while the older workers are above 55 years old. The UK data come from the Annual Survey of Hours and Earnings, which we accessed from the UK Parliament’s House of Commons Library at https://commonslibrary.parliament.uk/research-briefings/cbp-8456/. The wage variable is the log of median “weekly pay,” which is defined as the pay received from the employer’s payroll for the pay period. The younger workers are between 22 years old and 29 years old, while the older workers are between 50 years old and 59 years old. The Danish data come from StatBank Denmark, the statistical database maintained by the central authority of statistics in Denmark, which we accessed at https://statbank.dk/INDKP201. The wage variable is the log of mean “wages and salaries.” The younger workers are between 30 years old and 34 years old, while the older workers are between 55 years old and 59 years old. The Spanish data come from Instituto Nacional de Estadística, the Spanish Statistical Office, which we accessed at https://www.ine.es/dynt3/inebase/en/index.htm?padre=2129&capsel=2429#. The wage variable is the log of mean “annual net income.” The younger workers are between 16 years old and 29 years old, while the older workers are between 45 years old and 64 years old. The Canadian data come from the Survey of Labour and Income Dynamics of Statistics Canada, which we accessed at https://tinyurl.com/6mvxd23. The wage variable is the log of mean “wages, salaries, and commissions.” The younger workers are between 25 years old and 34 years old, while the older workers are between 55 years old and 64 years old.
Table B1: Age Wage Gap in Germany and France

<table>
<thead>
<tr>
<th>Year</th>
<th>Age group</th>
<th>Mean</th>
<th>P10</th>
<th>P25</th>
<th>Median</th>
<th>P75</th>
<th>P90</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Panel A: Germany (1996-2017), log daily wages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>< 35</td>
<td>4.14</td>
<td>3.21</td>
<td>4.02</td>
<td>4.28</td>
<td>4.49</td>
<td>4.69</td>
<td>781,438</td>
</tr>
<tr>
<td>1996</td>
<td>O55 - U35</td>
<td>0.28</td>
<td>0.72</td>
<td>0.18</td>
<td>0.17</td>
<td>0.25</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>< 35</td>
<td>4.44</td>
<td>3.54</td>
<td>4.08</td>
<td>4.60</td>
<td>4.91</td>
<td>5.15</td>
<td>320,950</td>
</tr>
<tr>
<td>2017</td>
<td>> 55</td>
<td>4.82</td>
<td>4.27</td>
<td>4.60</td>
<td>4.87</td>
<td>5.15</td>
<td>5.34</td>
<td>211,844</td>
</tr>
<tr>
<td>2017</td>
<td>O55 - U35</td>
<td>0.38</td>
<td>0.73</td>
<td>0.52</td>
<td>0.27</td>
<td>0.24</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Panel B: USA (1985-2017), log weekly wages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>< 35</td>
<td>5.67</td>
<td>5.01</td>
<td>5.30</td>
<td>5.67</td>
<td>6.03</td>
<td>6.36</td>
<td>50,003</td>
</tr>
<tr>
<td>1985</td>
<td>> 55</td>
<td>5.83</td>
<td>5.08</td>
<td>5.42</td>
<td>5.86</td>
<td>6.24</td>
<td>6.62</td>
<td>8,206</td>
</tr>
<tr>
<td>1985</td>
<td>O55 - U35</td>
<td>0.16</td>
<td>0.06</td>
<td>0.13</td>
<td>0.19</td>
<td>0.21</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>< 35</td>
<td>6.67</td>
<td>6.00</td>
<td>6.29</td>
<td>6.63</td>
<td>7.05</td>
<td>7.46</td>
<td>19,292</td>
</tr>
<tr>
<td>2019</td>
<td>> 55</td>
<td>6.93</td>
<td>6.17</td>
<td>6.49</td>
<td>6.91</td>
<td>7.43</td>
<td>7.90</td>
<td>10,618</td>
</tr>
<tr>
<td>2019</td>
<td>O55 - U35</td>
<td>0.26</td>
<td>0.18</td>
<td>0.20</td>
<td>0.27</td>
<td>0.38</td>
<td>0.44</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Panel A shows the age gap in log daily wages between 1996 and 2017 using German administrative data. Panel B shows the age gap in log weekly wages between 1985 and 2019 using USA survey data. Sources: In each year, the data pools information about all workers who were over 16 years old, had a full-time contract, and earned positive wages. Sources for Germany: The German data come from the LIAB Linked Employer-Employee Dataset provided by the Institute for Employment Research. Details on the construction of these samples are in Appendix B.2. Sources for United States: The USA data come from the Merged Outgoing Rotation Groups (MORG) of the Current Population Survey (CPS), which we accessed from the National Bureau of Economic Research (NBER) at https://data.nber.org/morg/annual/. Details on the construction of these samples are in Appendix B.3.
C Additional Evidence on Careers of Younger Workers

Figure C1: Shifts in Distribution of Yearly Earnings

Panel A: U35 workers
Yearly change in quartiles

Panel C: O55 workers
Yearly change in quartiles

Panel B: U35 workers
$\Delta_{2019-1985}$ in vingintiles

Panel D: O55 workers
$\Delta_{2019-1985}$ in vingintiles

Notes: These graphs show the changes in the shares of U35 and O55 workers in different parts of the distribution of yearly earnings. Specifically, for each year, Panel A shows the ratio between the share of U35 workers in each quartile and the share of U35 in the same quartile in 1985. Panel B plots the percentage-point difference in the share of U35 workers in each vingintile between 1985 and 2019. For example, “+0.5” indicates that the share of U35 workers in that vingintile increased by 5 percentage points between 1985 and 2019. Panel C and Panel D plot the same information for O55 workers. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Figure C2: Probability of Holding Top-Paying Job

Panel A: Top 10% & Top 5%, weekly wages
Panel B: Top 1% & Top 0.5%, weekly wages
Panel C: Top 10% & Top 5%, yearly earnings
Panel D: Top 1% & Top 0.5%, yearly earnings

Notes: These graphs show the changes in the share of U35 and O55 workers at the top of distribution of labor earnings. All plots show the ratios between the share of workers in a given age cohort in year t and the share of workers in the same age cohort in 1985. For example, a “0.05” for “U35—Top 10%” means that the share of U35 workers in the top 10 percent of the distribution of labor earnings increased by 5 percent since 1985. Panel A focuses on the top 10 percent and top 5 percent of the distribution of weekly wages. Panel B focuses on the top 1 percent and top 0.5 percent of the distribution of weekly wages. Panel C focuses on the top 10 percent and top 5 percent of the distribution of yearly earnings. Panel D focuses on the top 1 percent and top 0.5 percent of the distribution of yearly earnings. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Figure C3: Wage Growth at Start of Careers

Panel A: Weekly wages

Panel B: Yearly earnings

Notes: In Panel A, each line plots the median of the ratios between the weekly wages of new entrants and the median weekly wage of all workers in the same year. For example, consider a worker who entered the labor market in 1985. We compute the ratio between their weekly wages in the first six years of their careers and the median weekly wages of all workers in the same six years. We repeat this computation for all workers who entered the labor market between 1985 and 1989. Then, the median of these ratios is used to plot the “1985-1989” blue line. Panel B plots the same median ratios using yearly earnings, rather than weekly wages. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Moreover, for this analysis, we consider only workers who were active in the labor market for the first six years after entry. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Figure C4: Probability of Holding Managerial Positions (Italy)

Panel A: Share of manager jobs by age cohort
Panel B: Share of age cohort in manager jobs

Notes: These graphs show the trend in managerial positions by age cohorts. Panel A plots the share of manager jobs held by workers in different age cohorts. For example, “0.1” means that 10 percent of all managerial jobs in a year are held by workers in a given age cohort. Panel B plots the share of workers in each age cohort who hold a managerial position in a given year. For example, “0.1” means that 10 percent of workers in an age cohort are holding a managerial job in a year. *Sources:* In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
D Decomposition of Change in Wage Gap

Proposition 1. The change in mean log wage for age group \(a \) between years \(t \) and \(t' \) can be written as follows:

\[
\Delta w^{t,t'}_a = \sum_v \left(s_{a,v,t'} - s_{a,v,t} \right) \bar{w}_{v,t} + \sum_v \left(s_{a,v,t'} - s_{a,v,t} \right) \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right) + \sum_v s_{a,v,t} \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right).
\]

(D.1)

In this equation, \(s_{a,v,t} \) is the share of workers in age group \(a \), vingintile \(v \) of the distribution of wages, and year \(t \), while \(\bar{w}_{v,t} \) is the mean log wage in vingintile \(v \) and year \(t \).

Proof of proposition 1. This decomposition of the change in mean log wage for age group \(a \) between years \(t \) and \(t' \) can be obtained as follows:

\[
\Delta w^{t,t'}_a = \sum_v s_{a,v,t'} \bar{w}_{v,t'} - \sum_v s_{a,v,t} \bar{w}_{v,t} = \sum_v \left(s_{a,v,t'} - s_{a,v,t} \right) \bar{w}_{v,t} + \sum_v s_{a,v,t} \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right) = \sum_v \left(s_{a,v,t'} - s_{a,v,t} \right) \bar{w}_{v,t} + \sum_v s_{a,v,t} \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right) + \sum_v s_{a,v,t} \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right) - \sum_v s_{a,v,t} \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right) = \sum_v \left(s_{a,v,t'} - s_{a,v,t} \right) \bar{w}_{v,t} + \sum_v \left(s_{a,v,t'} - s_{a,v,t} \right) \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right) + \sum_v s_{a,v,t} \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right) + \sum_v s_{a,v,t} \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right).
\]
Proposition 2. The gap in the average log wage between U35 workers and O55 workers, as well as between years t and t', can be written as follows:

$$\Delta w_{O55}^{t,t'} - \Delta w_{U35}^{t,t'} = \sum_v \Delta s_{O55-U35,v,t' - t} \bar{w}_{v,t} + \sum_v \Delta s_{O55-U35,v,t' - t} (\bar{w}_{v,t'} - \bar{w}_{v,t})$$

Total ranking shift

Ranking shift

$$+ \sum_v (s_{O55,v,t} - s_{U35,v,t}) (\bar{w}_{v,t'} - \bar{w}_{v,t}).$$

Ranking shift x Wage trend

Wage trend

(D.2)

In this equation, $\Delta s_{O55-U35,v,t' - t}$ is the double difference in the share of workers in vingintile v (i) between O55 workers and U35 workers and (ii) between years t and t'. It can be rewritten as:

$$\Delta s_{O55-U35,v,t' - t} = (s_{O55,v,t'} - s_{O55,v,t}) - (s_{U35,v,t'} - s_{U35,v,t}).$$

Proof of proposition 2. The last equation can be obtained by differencing the last row of Equation (D.1):

$$\Delta w_{O55}^{t,t'} - \Delta w_{U35}^{t,t'} = \sum_v (s_{O55,v,t'} - s_{O55,v,t}) \bar{w}_{v,t} + \sum_v (s_{O55,v,t'} - s_{O55,v,t}) (\bar{w}_{v,t'} - \bar{w}_{v,t})$$

$$+ \sum_v s_{O55,v,t} (\bar{w}_{v,t'} - \bar{w}_{v,t}) - \sum_v (s_{U35,v,t'} - s_{U35,v,t}) \bar{w}_{v,t}$$

$$- \sum_v (s_{U35,v,t'} - s_{U35,v,t}) (\bar{w}_{v,t'} - \bar{w}_{v,t}) - \sum_v s_{U35,v,t} (\bar{w}_{v,t'} - \bar{w}_{v,t})$$

$$= \sum_v ((s_{O55,v,t'} - s_{O55,v,t}) - (s_{U35,v,t'} - s_{U35,v,t})) \bar{w}_{v,t}$$

$$+ \sum_v ((s_{O55,v,t'} - s_{O55,v,t}) - (s_{U35,v,t'} - s_{U35,v,t})) (\bar{w}_{v,t'} - \bar{w}_{v,t})$$

$$+ \sum_v (s_{O55,v,t} - s_{U35,v,t}) (\bar{w}_{v,t'} - \bar{w}_{v,t})$$

Total ranking shift

Ranking shift

$$= \sum_v \Delta s_{O55-U35,v,t' - t} \bar{w}_{v,t} + \sum_v \Delta s_{O55-U35,v,t' - t} (\bar{w}_{v,t'} - \bar{w}_{v,t})$$

Ranking shift x Wage trend

Wage trend
Figure D1: Decomposition of Change in Yearly Earnings

Panel A: 2019-1985 for all ages

Panel B: O55 workers - U35 workers over time

Notes: Panel A plots the change in mean log yearly earnings (decomposed into the three components of Equation (1)) between 1985 and 2019 for different age groups. Panel B plots the change in mean log yearly earnings between O55 workers and U35 workers, as well as between 1985 and year t. This double difference is further decomposed into three components, following Equation (2). *Sources:* In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
E Decomposition Between and Within Firms

Proposition 3. In year \(t \), the difference in average log weekly wages between U35 workers and O55 workers can be written as follows:

\[
\bar{w}_{O55,t} - \bar{w}_{U35,t} = \frac{1}{N_{O55}} \sum_{i \in O55} \bar{w}_{f(i)} - \frac{1}{N_{U35}} \sum_{i \in U35} \bar{w}_{f(i)} + \frac{1}{N_{O55}} \sum_{i \in O55} \Delta w_{i,f(i)} - \frac{1}{N_{U35}} \sum_{i \in U35} \Delta w_{i,f(i)}. \tag{E.1}
\]

On the left-hand side of this equation, \(\bar{w}_{O55,t} \) is the average log weekly wage of O55 workers in year \(t \) and \(\bar{w}_{U35,t} \) is the average log weekly wage of U35 workers in year \(t \). On the right-hand side of the equation, \(N_{O55} \) is the number of O55 workers in year \(t \), \(N_{U35} \) is the number of U35 workers in year \(t \), \(\bar{w}_{f(i)} \) is the average log weekly wage in year \(t \) within firm \(f(i) \), in which individual \(i \) works, and \(\Delta w_{i,f(i)} \) is the difference between the wage of worker \(i \) and the average log weekly wage in firm \(f(i) \) in year \(t \). The last term could be rewritten as \(\Delta w_{i,f(i)} = w_{i,f(i)} - \bar{w}_{f(i)} \). Moreover, the right-hand side does not show the time subscript \(t \) because all variables are observed at the same point in time.

Proof of proposition 3. This decomposition of the difference in average log weekly wages between U35 workers and O55 workers in year \(t \) can be obtained as follows:

\[
\bar{w}_{O55,t} - \bar{w}_{U35,t} = \frac{1}{N_{O55}} \sum_{i \in O55} w_{i,f(i)} - \frac{1}{N_{U35}} \sum_{i \in U35} w_{i,f(i)}
\]

\[
= \frac{1}{N_{O55}} \sum_{i \in O55} \left(w_{i,f(i)} + \bar{w}_{f(i)} - \bar{w}_{f(i)} \right) - \frac{1}{N_{U35}} \sum_{i \in U35} \left(w_{i,f(i)} + \bar{w}_{f(i)} - \bar{w}_{f(i)} \right)
\]

\[
= \frac{1}{N_{O55}} \sum_{i \in O55} \left(\text{Firm Average} \quad \bar{w}_{f(i)} \right) + \Delta w_{i,f(i)} - \frac{1}{N_{U35}} \sum_{i \in U35} \left(\bar{w}_{f(i)} + \Delta w_{i,f(i)} \right)
\]

\[
= \bar{w}_{f(i)} + \Delta w_{i,f(i)} - \frac{1}{N_{U35}} \sum_{i \in U35} \Delta w_{i,f(i)}
\]

\[
= \bar{w}_{f(i)} + \frac{1}{N_{O55}} \sum_{i \in O55} \Delta w_{i,f(i)} - \frac{1}{N_{U35}} \sum_{i \in U35} \Delta w_{i,f(i)}. \quad \text{(E.1)}
\]
Figure E1: Difference in Yearly Earnings Between and Within Firms

Panel A: O55 workers - U35 workers over time
Panel B: O55 workers - each age, 2019-1985

Notes: Panel A plots the difference in log yearly earnings (decomposed into the two components of Equation (3)) between O55 workers and U35 workers for each year between 1985 and 2019. “Between firms” computes the difference in average log yearly earnings at the firm level. “Within firms” computes the difference in the average deviation of individual workers’ yearly earnings from the firm averages. Panel B plots the difference in log yearly earnings between O55 workers and individual age groups and between 1985 and 2019. Again, this difference is decomposed into the same two components (Equation (3)). Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Figure E2: Descriptive Evidence on Within-Firm Effects

Panel A: Change in weekly wages for coworkers of U35 workers and O55 workers

Panel B: Change in yearly earnings for coworkers of U35 workers and O55 workers

Notes: Panel A shows the difference in log weekly wages between 1985 and 2019 for the coworkers of U35 workers and O55 workers in different percentiles of the distribution of weekly wages. Specifically, in each year, we assign each worker in the sample to a different percentile of the wage distribution. Then, for different percentiles, we compute the change in mean log weekly wages between 1985 and 2019 ("Workers in percentile"). Moreover, for U35 workers in percentile \(p \) and year \(t \), we compute the average log weekly wage of their coworkers who were older than 35 years old. We repeat this procedure for several percentiles and years and, then, we plot the difference in mean log weekly wage of coworkers of U35 workers between 1985 and 2019 ("Coworkers of U35 workers"). Finally, for O55 workers in percentile \(p \) and year \(t \), we compute the average log weekly wage of their coworkers who were younger than 55 years old. We repeat this procedure for several percentiles and years and, then, we plot the difference in mean log weekly wage of coworkers of O55 workers between 1985 and 2019 ("Coworkers of O55 workers"). For example, "0.24" for coworkers of U35 workers in percentile 10 means that the average weekly wage of the older coworkers of U35 workers in the 10\(^{th}\) percentile of the distribution of weekly wages increased by 0.24 log points between 1984 and 2015. Panel B repeats the same process using yearly earnings, rather than weekly wages. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Counterfactual Decomposition of Ranking Shift

The goal of the following analysis is to decompose the ranking-shift component of Equation (D.1) into a between-firm element and a within-firm element. To do so, we adapted a methodology previously used by Machado and Mata (2005), Autor, Katz, and Kearney (2005), and Song et al. (2019) to our specific empirical setting.

In each year, we compute the average log weekly wage within every firm. Then, we sort workers into 100 percentiles or firm-based groups using their firm’s average log weekly wage. In most cases, this procedure ensures that all workers within a firm are assigned to the same firm-based group. There are exceptions to this rule for firms whose average log weekly wages are close to the border of the next percentile.

Next, within each firm-based group, we sort workers into 500 quantiles or worker-based groups using the deviation of each worker’s log weekly wage from the average log weekly wage within the firm-based group.

The result of this exercise is a sorting of workers into 50,000 firm-worker groups that take into account both differences in average wages between firms (the 100 firm-based percentiles) and differences of individual wages from the average wage in each firm-based group (the 500 worker-based quantiles within each firm-based percentile). As a check on the validity of this process, we compare the shares of workers in different age groups and vingintiles of the distribution of weekly wages predicted by the sorting outcome (that is, the distribution of average log weekly wages computed in each firm-worker group) to the actual shares observed in the raw data. As expected, the predicted shares are close to the actual ones (Figure F1). Discrepancies arise only due to the forced binning of workers in 50,000 groups of equal dimension, as briefly discussed above. This test confirms that these discrepancies are not common.

We can use this sorting to rewrite the share of workers in age group \(a \), firm-worker group \((f, e)\), and year \(t \), as follows:

\[
S_{a,(f,e),t} = S_{a,f,t} \cdot S_{a,(e|f),t}.
\]
(E.1)

Equation (F.1) rewrites the unconditional share of workers in age group \(a \) and firm-worker group \((f, e)\) as the product of the share of workers in age group \(a \) and firm-group \(f \) and the share of workers in age group \(a \) and worker group \(e \) conditional on being in firm group \(f \).

Next, we can use Equation (F.1) to rewrite the ranking-shift component of Equation (D.1) into a between-firm element and a within-firm element.
Proposition 4. The ranking-shift component of the change in log weekly wages for workers in age group a between t and t' can be written as follows:

$$\sum_v \left(s_{a,v,t'} - s_{a,v,t} \right) \bar{w}_{v,t} = \sum_{g \in (f,e)} \left(s_{a,f,t'} - s_{a,f,t} \right) s_{a,(e|f),t} \bar{w}_{g,t}$$

\[\text{(F.2)}\]

Between firms

$$+ \sum_{g \in (f,e)} s_{a,f,t} \left(s_{a,(e|f),t'} - s_{a,(e|f),t} \right) \bar{w}_{g,t}$$

Within firms

$$+ \sum_{g \in (f,e)} \left[\left(s_{a,f,t'} - s_{a,f,t} \right) \left(s_{a,(e|f),t'} - s_{a,(e|f),t} \right) \right] \bar{w}_{g,t}.$$

Residual

On the left-hand side of this equation, we have the ranking-shift component of Equation (D.1). Specifically, the average wage in vingintile of the distribution of weekly wages v and year t ($\bar{w}_{v,t}$) is multiplied by the change between t and t' in the share of workers in age group a and vingintile v. On the right-hand side, g identifies one of the 50,000 firm-worker groups created by the sorting and $\bar{w}_{g,t}$ is the average wage in firm-worker group g and year t.

Proof of proposition 4. A change in the share of workers in age group a and firm-worker group $g = (f,e)$ between t and t' can be rewritten using Equation (F.1), as follows:

$$s_{a,(f,e),t'} - s_{a,(f,e),t} = s_{a,f,t'} \cdot s_{a,(e|f),t'} - s_{a,f,t} \cdot s_{a,(e|f),t}$$

$$= s_{a,f,t'} \cdot s_{a,(e|f),t'} - s_{a,f,t} \cdot s_{a,(e|f),t} + \left(s_{a,f,t'} \cdot s_{a,(e|f),t} - s_{a,f,t} \cdot s_{a,(e|f),t} \right)$$

$$+ \left(s_{a,f,t} \cdot s_{a,(e|f),t'} - s_{a,f,t} \cdot s_{a,(e|f),t'} \right) + \left(s_{a,f,t} \cdot s_{a,(e|f),t} - s_{a,f,t} \cdot s_{a,(e|f),t} \right)$$

Between firms

$$\left(s_{a,f,t'} - s_{a,f,t} \right) s_{a,(e|f),t} + \left(s_{a,f,t} \right) \left(s_{a,(e|f),t'} - s_{a,(e|f),t} \right)$$

Within firms

$$+ \left(s_{a,f,t'} - s_{a,f,t} \right) \left(s_{a,(e|f),t'} - s_{a,(e|f),t} \right).$$

Residual

(F.3)

This equation indicates that the change in the share of workers in age group a and firm-worker group $g = (f,e)$ between t and t' can be written to capture two interesting counterfactual scenarios. First, we have a between-firm counterfactual, defined as the change in the share of workers in age group a and firm group f between t and t', while keeping the distribution of workers within each firm-worker group g fixed in year t. In other words, we allow workers of age group a to change their sorting across firm groups, while keeping intra-firm distributions untouched. Second, there is a within-firm counterfactual, defined as the change in the share of workers in age group a and firm-worker group $(e|f)$, as well as between t and t', while keeping the sorting of workers across firm groups f fixed in year t. In other words, we allow workers in age group a to resort within firms as they did in the data, but we keep their allocation across firms fixed in year t. Third, there is a residual component that is the product of the two previous changes in the shares of workers.

Based on Equation (F.3), the ranking-shift component of the change in weekly wages for workers
in age group a between t and t' can be written as follows:

$$
\sum_v \left(s_{a,v,t'} - s_{a,v,t} \right) \bar{w}_{v,t} = \sum_{g \in (f,e)} \left(s_{a,(f,e),t'} - s_{a,(f,e),t} \right) \bar{w}_{g,t}
$$

$$
= \sum_{g \in (f,e)} \left(s_{a,f,t'} - s_{a,f,t} \right) s_{a,(e|f),t} \bar{w}_{g,t} \\
\text{Between firms}
$$

$$
+ \sum_{g \in (f,e)} s_{a,f,t} \left(s_{a,(e|f),t'} - s_{a,(e|f),t} \right) \bar{w}_{g,t} \\
\text{Within firms}
$$

$$
+ \sum_{g \in (f,e)} \left(s_{a,f,t'} - s_{a,f,t} \right) \left(s_{a,(e|f),t'} - s_{a,(e|f),t} \right) \bar{w}_{g,t} \\
\text{Residual}
$$

Proposition 5. The interaction between the ranking-shift component and the wage-trend component of Equation (D.1) can be written as follows:

$$
\sum_v \left(s_{a,v,t'} - s_{a,v,t} \right) \left(\bar{w}_{v,t'} - \bar{w}_{v,t} \right) = \sum_{g \in (f,e)} \left(s_{a,(f,e),t'} - s_{a,(f,e),t} \right) \left(\bar{w}_{g,t'} - \bar{w}_{g,t} \right)
$$

$$
= \sum_{g \in (f,e)} \left(s_{a,f,t'} - s_{a,f,t} \right) s_{a,(e|f),t} \left(\bar{w}_{g,t'} - \bar{w}_{g,t} \right) \\
\text{Between firms}
$$

$$
+ \sum_{g \in (f,e)} s_{a,f,t} \left(s_{a,(e|f),t'} - s_{a,(e|f),t} \right) \left(\bar{w}_{g,t'} - \bar{w}_{g,t} \right) \\
\text{Within firms}
$$

$$
+ \sum_{g \in (f,e)} \left(s_{a,f,t'} - s_{a,f,t} \right) \left(s_{a,(e|f),t'} - s_{a,(e|f),t} \right) \left(\bar{w}_{g,t'} - \bar{w}_{g,t} \right) \\
\text{Residual}
$$

Proof of proposition 5. As seen under Proposition 4, this rewriting of the interaction between the ranking-shift component and the wage-trend component of Equation (D.1) stems directly from Equation (F.1).

Figure F2. In Panel A, Figure F2 decomposes the total-ranking-shift component of Equation (D.1) into a between-firm element, a within-firm element, and a residual. In other words, for U35 workers and O55 workers separately, it decomposes the average wage difference between 1985 and 2019 that stems from the total ranking shift, as follows:

$$
\sum_v \left(s_{a,v,2019} - s_{a,v,1985} \right) \bar{w}_{v,1985} + \sum_v \left(s_{a,v,2019} - s_{a,v,1985} \right) \left(\bar{w}_{v,2019} - \bar{w}_{v,1985} \right). \quad \text{(F.5)}
$$

The between-firm component is as follows:

$$
\sum_{g \in (f,e)} \left(s_{a,f,2019} - s_{a,f,1985} \right) \cdot s_{a,(e|f),1985} \cdot \bar{w}_{g,1985}

+ \sum_{g \in (f,e)} \left(s_{a,f,2019} - s_{a,f,1985} \right) \cdot s_{a,(e|f),1985} \cdot \left(\bar{w}_{g,2019} - \bar{w}_{g,1985} \right).
$$
The within-firm component is as follows:

\[
\sum_{g \in \{f,e\}} s_{a,f,1985} \cdot (s_{a,\{e|f\},2019} - s_{a,\{e|f\},1985}) \cdot \bar{w}_{g,1985}
+ \sum_{g \in \{f,e\}} s_{a,f,1985} \cdot (s_{a,\{e|f\},2019} - s_{a,\{e|f\},1985}) \cdot (\bar{w}_{g,t} - \bar{w}_{g,1985}).
\]

The residual is as follows:

\[
\sum_{g \in \{f,e\}} (s_{a,f,2019} - s_{a,f,1985}) \cdot (s_{a,\{e|f\},2019} - s_{a,\{e|f\},1985}) \cdot \bar{w}_{g,1985}
+ \sum_{g \in \{f,e\}} (s_{a,f,2019} - s_{a,f,1985}) \cdot (s_{a,\{e|f\},2019} - s_{a,\{e|f\},1985}) \cdot (\bar{w}_{g,t} - \bar{w}_{g,1985}).
\]

In Panel B, Figure F2 shows the decomposition of the total-ranking-shift component of Equation (D.2) into a between-firm element, a within-firm element, and a residual. In other words, in each year \(t \in \{1986, 2019\}\), it computes the average wage difference between O55 workers and U35 workers, as well as between 1985 and \(t\), that stems from the total ranking shift:

\[
\sum_{v} \Delta s_{O55-U35,v,t-1985} \cdot \bar{w}_{v,1985} + \sum_{v} \Delta s_{O55-U35,v,t-1985} \cdot (\bar{w}_{v,t} - \bar{w}_{v,1985}). \tag{F.6}
\]

The between-firm component is as follows:

\[
\sum_{g \in \{f,e\}} \Delta s_{O55-U35,f,t-1985} \cdot \Delta s_{O55-U35,(e|f),1985} \cdot \bar{w}_{g,1985}
+ \sum_{g \in \{f,e\}} \Delta s_{O55-U35,f,t-1985} \cdot \Delta s_{O55-U35,(e|f),1985} \cdot (\bar{w}_{g,t} - \bar{w}_{g,1985}),
\]

where

- \(\Delta s_{O55-U35,f,t-1985}\) is \((s_{O55,f,t} - s_{O55,f,1985}) - (s_{U35,f,t} - s_{U35,f,1985})\);
- \(\Delta s_{O55-U35,(e|f),1985}\) is \(s_{O55,(e|f),1985} - s_{U35,(e|f),1985}\).

The within-firm component is as follows:

\[
\sum_{g \in \{f,e\}} \Delta s_{O55-U35,f,1985} \cdot \Delta s_{O55-U35,(e|f),t-1985} \cdot \bar{w}_{g,1985}
+ \sum_{g \in \{f,e\}} \Delta s_{O55-U35,f,1985} \cdot \Delta s_{O55-U35,(e|f),t-1985} \cdot (\bar{w}_{g,t} - \bar{w}_{g,1985}),
\]

where

- \(\Delta s_{O55-U35,f,1985}\) is \(s_{O55,f,1985} - s_{U35,f,1985}\);
- \(\Delta s_{O55-U35,(e|f),t-1985}\) is \((s_{O55,(e|f),t} - s_{O55,(e|f),1985}) - (s_{U35,(e|f),t} - s_{U35,(e|f),1985})\).

The residual is as follows:

\[
\sum_{g \in \{f,e\}} \Delta s_{O55-U35,f,t-1985} \cdot \Delta s_{O55-U35,(e|f),t-1985} \cdot \bar{w}_{g,1985}
+ \sum_{g \in \{f,e\}} \Delta s_{O55-U35,f,t-1985} \cdot \Delta s_{O55-U35,(e|f),t-1985} \cdot (\bar{w}_{g,t} - \bar{w}_{g,1985}).
\]
Figure F1: Actual Vs. Approximated Shares

Notes: These graphs show the percentage-point difference in the share of U35 workers (Panel A) or O55 workers (Panel B) in each vingintile of the distribution of weekly wages between 1985 and 2019. “Actual change” plots these differences using the raw distribution of weekly wages. “Approximated change” plots these differences using the distribution that arises from the sorting described in Section F. Specifically, workers are first sorted in 100 percentiles (firm-based groups) based on their firm’s average weekly wages. Within each percentile, workers are then sorted in 500 quantiles (firm-worker groups) based on the difference between their weekly wage and the average weekly wage in their firm group. Then, the percentage-point difference is computed starting from the distribution of the average weekly wages of each firm-worker group. Discrepancies between actual and approximated shares may arise due to the binning of workers in equally sized firm groups and firm-worker groups. The graphs show that these discrepancies are inconsequential. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Figure F2: Decomposition of Total Ranking Shift

Panel A: Yearly earnings
2019-1985 for U35 workers & O55 workers

Panel B: Yearly earnings
O55 workers - U35 workers over time

Notes: Panel A decomposes the total-ranking-shift change in log yearly earnings (Equation (1)) between 1985 and 2019 for U35 workers and O55 workers, separately. Panel B decomposes the total-ranking-shift change in log yearly earnings between O55 workers and U35 workers and between year t and 1985. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
G More Details on the AKM Model

In this section, we provide more details about the econometric model of wages introduced in Section 5:

\[w_{i,t} = \theta_i + \psi_{a(i)}(j_{i,t},p) + \beta a(i) X_{i,t} + \varepsilon_{i,t}. \]

Deviation from basic AKM model. The log of the weekly wage of individual \(i \) in year \(t \) \((w_{i,t}) \) is written as the sum of worker-level fixed effects \((\theta_i,p) \), fixed effects for firm \(j(i,t) \) that employs worker \(i \) in year \(t \) \((\psi_{a(i)}(j_{i,t},p)) \), time-varying worker-level characteristics \((X_{i,t}) \), and time-varying unobservable factors \((\varepsilon_{i,t}) \). The worker-level characteristics include a quadratic function of age and experience.

Our framework makes two main deviations from the most basic form of the AKM model. First, we estimate the model separately for workers in age group \(a \in \{U35, O55\} \) in order to obtain separate sets of firm fixed effects. So, for each firm \(j \) in the sample, we will estimate one set of fixed effect for U35 workers and one set of fixed effect for O55 workers. This strategy is in the same vein as the estimation of gender-specific firm rents in Card, Cardoso, and Kline (2016) and of age-specific firm rents in Kline, Saggio, and Sølvsten (2020).

Second, the basic AKM model has time-invariant firm fixed effects, an assumption that can be acceptable when the analysis focuses on a short time period. However, we study 35 years of labor-market data: in this case, assuming that firm-level rents do not vary over time is too restrictive. Therefore, in Equation (G.1), we interact the time-invariant firm rents with twelve dummies that identify consecutive three-year periods \(p \in \{85-87, 88-90, 91-93, 94-96, 97-99, 00-02, 03-05, 06-08, 09-11, 12-14, 15-17, 18-19\} \). So, for each firm \(j \) and age group \(a \), we obtain up to twelve fixed effects that allow us to measure variations in firm rents over time. Several prior works have estimated a similar time-varying AKM model when studying long periods of time (for example, Lachowska et al. (2019) and Engbom and Moser (2020)).

Therefore, average firm rents estimated with Equation (G.1) can change over time for three reasons. First, the individual firm fixed effects can change from period \(p \) to period \(p' \) because Equation (G.1) allows them to vary every five years. Second, the averages may change every year because the number of firms can change from year to year. Third, the average firm rents may change over time because the share of U35 workers and O55 workers in each firm can vary every year.

The construction of the sample. As already discussed in Appendix B.1, the initial Social Security dataset has a row for each worker-firm pair. In other words, in each year, a worker who moves across two firms appears twice: one row has information about the contract with the old firm, while the other row has information about the contract with the new firm. In order to estimate Equation (G.1), we need to transform this extensive dataset into a panel with a single worker-level observation per year. Therefore, in case of multiple worker-level observations per year, we simplify the dataset by keeping the working spell with the highest wage.

This data management implies three things. First, we miss a firm-to-firm move only when the following conditions are met: (i) worker \(i \) moves from firm \(j \) to firm \(j + 1 \) in year \(t \) and the wages earned at firm \(j \) in year \(t \) are lower than the wages earned at firm \(j + 1 \) in year \(t \), and (ii) worker \(i \) moves from firm \(j + 1 \) to firm \(j + 2 \) in year \(t + 1 \) and the wages earned at firm \(j + 1 \) in year \(t + 1 \) are lower than the wages earned at firm \(j + 2 \) in year \(t + 1 \). In this specific case, the final dataset shows that worker \(i \) moved from firm \(j \) in year \(t \) to firm \(j + 2 \) in year \(t + 1 \). These cases are rare and thus unlikely to bias our findings: out of 29,622,176 firm-to-firm transitions between 1985 and 2019, only 536,123 or 1.8 percent are lost when we simplify the panel to have a single observation per worker and year.

Second, the final dataset might postpone firm-to-firm transitions by a few months. For example,
if worker i moves from firm j to firm $j + 1$ in the third quarter of year t and the wages earned at firm j are lower than the wages earned at firm $j + 1$, the final dataset shows that worker i moved from firm j in year t to firm $j + 1$ at the beginning of year $t + 1$, rather than in the third quarter of year t.

These two problems are common to all studies that measure worker turnover with yearly data. In fact, yearly data cannot capture a turnover event that happens on a specific day without some degree of measurement error. If anything, the Italian dataset has more advantageous characteristics with respect to many other employer-employee datasets. For example, the German Social Security data distributed by the Institute for Employment Research (IAB) are a static snapshot of the labor market on the 30th of June of every year. This structure implies that all firm-to-firm transitions that happen in the second semester and do not persist until the 30th of June of the following year cannot be observed in the data. Using the Italian Social Security dataset, we can see all firm-to-firm transitions and thus study the impact that omitting some of them may have on the final results.

Third, it should be noted that the weekly wages are always a correct measure of earnings even when we drop a working spell. In fact, this variable is measured using information for the working spell that was retained in the dataset. For example, if worker i has working spells A and B in year t and we drop spell B, the weekly wage for year t is computed as the total earnings in spell A divided by the weeks worked in spell A. Again, this is an advantage of the Italian Social Security data over the employer-employee datasets that provide a single cross-section on a specific day of each year.

Finally, Equation (G.1) is estimated for both U35 workers and O55 workers on the largest dual connected set. This is the largest set of firms connected by direct firm-to-firm transitions of both younger and older workers (Table G1).

Decomposition of firm rents. We decompose the overall difference in firm rents between U35 workers and O55 workers into two components: (i) sorting between higher-rent and lower-rent firms and (ii) bargaining within firms. Specifically, we adapt to our empirical context a decomposition of firm fixed effects proposed by Card, Cardoso, and Kline (2016), as follows:

$$E \left(\Delta t_{-1985} \psi_{j(i,t),p}^{O55} \mid a(i) = O55 \right) - E \left(\Delta t_{-1985} \psi_{j(i,t),p}^{U35} \mid a(i) = U35 \right)$$

$$= E \left(\Delta t_{-1985} \psi_{j(i,t),p}^{O55} - \Delta t_{-1985} \psi_{j(i,t),p}^{U35} \mid a(i) = O55 \right) \tag{G.2}$$

$$+ E \left(\Delta t_{-1985} \psi_{j(i,t),p}^{U35} \mid a(i) = O55 \right) - E \left(\Delta t_{-1985} \psi_{j(i,t),p}^{U35} \mid a(i) = U35 \right) \tag{G.3}$$

$$= E \left(\Delta t_{-1985} \psi_{j(i,t),p}^{O55} - \Delta t_{-1985} \psi_{j(i,t),p}^{U35} \mid a(i) = U35 \right) \tag{G.4}$$

$$+ E \left(\Delta t_{-1985} \psi_{j(i,t),p}^{O55} \mid a(i) = O55 \right) - E \left(\Delta t_{-1985} \psi_{j(i,t),p}^{O55} \mid a(i) = U35 \right).$$
For sake of brevity, this equation simplifies the notation of the expected values. For example, the first term $E \left(\Delta_{t-1985, \psi_{j(i,t),p}^{O55}} \mid a(i) = O55 \right)$ can be rewritten as follows:

$$E \left(\Delta_{t-1985, \psi_{j(i,t),p}^{O55}} \mid a(i) = O55 \right) = E \left(\psi_{j(i,t),p}^{O55} \mid a(i) = O55, T = t \right) - E \left(\psi_{j(i,1985),p}^{O55} \mid a(i) = O55, T = 1985 \right).$$

In other words, it is the difference between the average firm rents of O55 workers in year t, conditional on the O55 workers present in year t, and the average firm rents of O55 workers in year 1985, conditional on the O55 workers present in year 1985.

Following the popular Blinder-Oaxaca decomposition, Equation (G.3) decomposes the double difference of firm premiums between 1985 and year t and between U35 workers and O55 workers into two components: bargaining and sorting. The first component is the double difference in firm rents (i) between 1985 and year t and (ii) between younger and older workers, conditional on the set of jobs held by O55 workers. This element measures differential trends in bargaining power between U35 workers and O55 workers, that is, differences in their ability to appropriate firm rents in the same set of jobs. The second component measures the double difference of firm-specific rents among U35 workers (i) between 1985 and year t and (ii) between the the set of jobs held by O55 workers and the set of jobs held by U35 workers. It measures the effect that the sorting of U35 workers across different jobs had on the time trends of their firm rents.

It is possible to compute an alternative decomposition. In Equation (G.4), bargaining is the double difference in firm rents (i) between 1985 and year t and (ii) between younger and older workers, conditional on the set of jobs held by U35 workers. Sorting is the double difference of firm-specific rents among O55 workers (i) between 1985 and year t and (ii) between the the set of jobs held by O55 workers and the set of jobs held by U35 workers.

In practice,

- $E \left(\Delta_{t-1985, \psi_{j(i,t),p}^{O55}} - \Delta_{t-1985, \psi_{j(i,t),p}^{U35}} \mid a(i) = O55 \right)$ is the average difference between the change over time in firm rents for O55 workers and the change over time in firm rents for U35 workers within each firm, weighting each firm rent by the share of O55 workers employed by the firm in the relevant year.

- $E \left(\Delta_{t-1985, \psi_{j(i,t),p}^{O55}} - \Delta_{t-1985, \psi_{j(i,t),p}^{U35}} \mid a(i) = U35 \right)$ is the same average difference in firm rents, but it weights each firm rent by the share of U35 workers employed by the firm in the relevant year.

- $E \left(\psi_{j(i,t),p}^{O55} \mid a(i) = O55 \right)$ is the average change between 1985 and year t in the firm rents received by O55 workers.

- $E \left(\psi_{j(i,t),p}^{U35} \mid a(i) = U35 \right)$ is the average change in the rents received by U35 workers.

- $E \left(\Delta_{t-1985, \psi_{j(i,t),p}^{U35}} \mid a(i) = U35 \right)$ is the average change in the firm rents received by O55 workers weighting each firm fixed effects by the share of U35 workers at the firm.

- $E \left(\Delta_{t-1985, \psi_{j(i,t),p}^{U35}} \mid a(i) = O55 \right)$ is the average change in the firm rents received by U35 workers weighting each firm fixed effects by the share of O55 workers at the firm.
Normalization. In a standard AKM model, the level of the firm fixed effects is not identified without a normalization. Moreover, it is well known that the choice of the normalization could affect the final results. For example, Card, Cardoso, and Kline (2016) measures the level of firm rents for men and women with Portuguese employer-employee data. It normalizes the firm rents for both genders using the average premium of firms with a value added below a certain threshold. However, it also notes that the normalized fixed effects correctly measure the level of firm rents only if the rents of firms below the value-added threshold are zero.

In our empirical context, the choice of the normalization does not bear any consequence on the analysis. The main reason is that Equation (G.2) measures a difference in the time trends of the firm rents of U35 workers and O55 workers, rather than a difference in their levels at a specific point in time. Specifically, in our estimation, we normalize all firm rents for both U35 workers and O55 workers by subtracting the fixed effect of the largest firm in the whole dual connected sample. In other words, we subtract the same constant from the firm rents estimated in every period and for both age groups. Therefore, when we consider a change over time in firm rents, the normalization constant always drops from the computation.

Identification. As it is well known from prior works, the AKM model estimates the firm fixed effects using movers, that is, workers who move between firms in the dual connected sample. Therefore, the nature of firm transitions in the data is crucial to ensure that the estimation of Equation (G.1) captures the true value of firm rents. Specifically, the firm fixed effects are unbiased if they are not correlated with the residual $\epsilon_{i,t}$, conditional on worker fixed effects. In this framework, there are three main threats to identification.

First, firm-to-firm switches should not be correlated with unobserved temporary firm shocks. If this condition is not met, workers may leave a firm in response to a negative short-term shock or may join a firm in expectation of a positive short-term shock. The result is that the firm fixed effects would not be able to isolate more permanent firm-level differences in wage premia. In event studies centered around firm transitions, this violation may coincide with dips or spikes in wages just before or after a job transition.

Second, firm-to-firm transitions should not be correlated with firm-worker match effects. If this condition is violated, workers may move to firms that have a more positive match component. In practice, if this type of violation makes up a large share of firm-to-firm switches, transitions to higher-rent and lower-rent firms do not generate symmetric and opposite wage changes. Moving to higher-rent firms may coincide with a wage change that is larger than the average change in wage premia between the old and new firm, because movers choose a new firm with a more positive match effect. For the same reason, moving to lower-rent firms may coincide with a wage change that is smaller than the average change in wage premia between the old and new firm.

Third, firm-to-firm transitions should not be correlated with short-term worker-level shocks. If this condition is not met, workers who received a positive wage shock and are on an increasing wage trend may be more likely to move to higher-rent firms, and vice versa. In practice, if this form of violation is a major driver of job transitions, we should observe increasing or decreasing trends in average wages in the periods just before or after a move.

The estimation of Equation (G.1) deviates from the standard AKM model in the definition of a job move. In the basic model, the firm rents are time invariant. Each firm in the connected set receives a single firm effect, which is identified by workers leaving and joining the firm throughout the time period covered by the data. In a time-varying AKM model like the one described by Equation (G.1), a firm is defined by a combination of a physical firm in the data and a period dummy. In our empirical context, in which we divided the time period into three-year periods, each physical firm becomes twelve firm-period pairs. In this model, job moves are defined based on the firm-period
pairs, rather than the physical firms. This framework implies that the firm rents are estimated also using observations from stayers, that is, workers who stay in a firm across time periods. Using both movers and stayers (although, only across three-year periods) is advantageous for the purpose of the estimation because it substantially widens the pool of workers who contribute to identifying the firm effects, reducing the concerns related to small sample bias and selection into firm-to-firm transitions.

Residuals. A violation of the separability assumption between the worker effects and the firm rents is likely to produce large residuals in Equation (G.1) for some type of matches (as discussed, for example, by Card, Heining, and Kline (2013) and Card, Cardoso, and Kline (2016)). Therefore, a standard test for the goodness of fit of the model is to plot average residuals for different levels of worker and firm effects. Specifically, we divide the distributions of firm rents and worker effects in deciles and plot the mean residuals for their 100 combinations, separately for U35 workers and O55 workers (Figure G2).

There are at least two main results that corroborate the good fit of the model. First, there are not strong and recognizable patterns in the data. For example, we do not find that the mean residuals are always larger when high-effect workers are matched to low-effect firms. Second, the magnitudes of nearly all mean residuals are small and not economically significant. Out of 200 averages, only one is slightly larger than 0.02, five have an absolute value between 0.01 and 0.02, while all the others are even closer to zero.

Firm-worker match effects. As it is standard in this literature, we also estimate a variation of the wage model in Equation (5) with firm-worker fixed effects in place of separate firm and worker dummies. The inclusion of job-match effects improves the fit of the model, but only slightly. The R^2 of the model for U35 workers increases by 4.6 percentage points, while the R^2 of the model for U55 workers increases by only 1.4 percentage points. Moreover, the standard deviation of the firm-worker fixed effects is substantially smaller than the one of the firm effects in the baseline model. These findings are common to many prior works in this field (for example, Card, Cardoso, and Kline (2016) and Song et al. (2019)) and suggest that the influence of firm-worker match effects is not significant.

The event studies in Section 5.4. To perform this analysis, we adapt to our specific needs an empirical process described by Lamadon, Mogstad, and Setzler (2019). In each year t between 1998 and 2016, we compute the value-added shock from $t - 1$ to t for each firm in the sample. We then divide firms in tertiles based on their value-added shock in year t. On average, firms in the top tertile experienced a positive 0.18-log-point value-added shock between $t - 1$ and t, while firms in the bottom tertile experienced a negative 0.13-log-point shock. In the next step, we create event-study panels for each year t by (i) appending data between $t - 2$ and $t + 3$, (ii) keeping observations only from U35 workers and O55 workers, and (iii) computing the average log weekly wage and log value-added shock at the level of firms, age groups, and event periods. At this point, we append all these newly created datasets and compute the average log weekly wage and value-added shock by tertiles of the distribution of value-added shocks in period 0, age groups, and event periods. At this point, we append all these newly created datasets and compute the average log weekly wage and value-added shock by tertiles of the distribution of value-added shocks in period 0, age groups, and event periods. Weighting each firm-level data point by the firm’s number of either U35 workers or O55 workers. In the final step, we compute the change in log wages for U35 workers and O55 workers that stems from a positive shock, defined as the difference in value-added shock between the top tertile and the mid tertile. Similarly, we measure the wage change stemming for a negative value-added shock, leveraging the

\[\text{We restrict this analysis between 1998 and 2016 because (i) balance-sheet data with information about value added are available only between 1996 and 2019 and (ii) we need two years before and three years after each event period to study pre-event and post-event trends.}\]
difference between the bottom tertile and the mid tertile.

Figure G1: Event Studies Around Firm-to-Firm Transitions

Panel A: U35 workers
Panel B: O55 workers

Notes: These figures compute the mean log weekly wage associated with firm-to-firm job moves. Firms are divided into quartiles based on their average weekly wage in the last year before a job move and in the first year after a job move. The sample includes workers who were at the same firm in periods -2 and -1, moved to a new firm in period 0, and then stayed in the new firm until period 1. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).

Figure G2: Residuals by Deciles of Worker and Firm Effects

Panel A: U35 workers
Panel B: O55 workers

Notes: These figures compute the mean residuals from Equation (5) by deciles of worker effects and firm rents. Specifically, for each decile of firm rents on the x axis, the figures show ten mean residuals, one for each decile of worker effects. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Figure G3: Wage Passthrough of Value-Added Shocks

Notes: Each line shows the average effect on wages of either U35 workers or O55 workers of either a positive 10-percent value-added shock or a negative 10-percent value-added shock. The dataset for the event study is created as follows. In each year \(t \) between 1998 and 2016, we compute the value-added shock from \(t - 1 \) to \(t \) for each firm in the sample. We then divide firms in tertiles based on their value-added shock in year \(t \). In the next step, we create event-study panels for each year \(t \) by (i) appending data between \(t - 2 \) and \(t + 3 \), (ii) keeping observations only from U35 workers and O55 workers, and (iii) computing the average log weekly wage and log value-added shock at the level of firms, age groups, and event periods. At this point, we append all these newly created datasets and compute the average log weekly wage and value-added shock by tertiles of the distribution of value-added shocks in period 0, age groups, and event periods, weighting each firm-level data point by the firm’s number of either U35 workers or O55 workers. In the final step, we compute the change in log wages for U35 workers and O55 workers that stems from a positive shock, defined as the difference in value-added shock between the top tertile and the mid tertile. Similarly, we measure the wage change stemming for a negative value-added shock, leveraging the difference between the bottom tertile and the mid tertile. Country: Italy. Time period: 1996-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Table G1: Panel AKM

<table>
<thead>
<tr>
<th></th>
<th>Full set</th>
<th>Single connected U35</th>
<th>Single connected O55</th>
<th>Dual connected set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All U35 workers</td>
<td>O55 workers</td>
<td>All</td>
<td>All U35 workers</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>31.50</td>
<td>27.30</td>
<td>58.94</td>
</tr>
<tr>
<td></td>
<td>U35 workers</td>
<td>0.87</td>
<td>-</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>O55 workers</td>
<td>0.13</td>
<td>-</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>0.65</td>
<td>0.63</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Years in labor market</td>
<td>11.35</td>
<td>7.64</td>
<td>35.61</td>
</tr>
<tr>
<td></td>
<td>Temporary contract</td>
<td>0.08</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Foreign-born</td>
<td>0.07</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Manufacturing</td>
<td>0.36</td>
<td>0.37</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Services</td>
<td>0.34</td>
<td>0.35</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Construction</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Log weekly wage</td>
<td>6.04</td>
<td>6.00</td>
<td>6.33</td>
</tr>
<tr>
<td></td>
<td>Log yearly earnings</td>
<td>9.86</td>
<td>9.81</td>
<td>10.18</td>
</tr>
<tr>
<td></td>
<td>Gap log weekly wage</td>
<td>0.33</td>
<td>-</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>N. of observations</td>
<td>149,399,136</td>
<td>129,564,212</td>
<td>19,834,924</td>
</tr>
<tr>
<td></td>
<td>N. of firms</td>
<td>9,414,361</td>
<td>8,515,068</td>
<td>899,293</td>
</tr>
<tr>
<td></td>
<td>N. of workers</td>
<td>24,059,933</td>
<td>19,915,864</td>
<td>4,144,069</td>
</tr>
</tbody>
</table>

Notes: Columns 1 to 3 describe the characteristics of the full sample of U35 workers and O55 workers. Columns 4 and 5 describe the characteristics of the single connected sets. Specifically, column 4 describes the characteristics of the set of firms that are directly connected by moves of U35 workers, while column 5 describes the characteristics of the set of firms that are directly connected by moves of O55 workers. Columns 6 to 8 describe the characteristics of the dual connected set, which is the sample used for the estimation of Equation (5). The dual connected set is a restricted set of firms that are connected by firm-to-firm transitions of both U35 workers and O55 workers. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Table G2: Estimates of the AKM Model

<table>
<thead>
<tr>
<th></th>
<th>All periods</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U35 workers</td>
<td>O55 workers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>Std. dev. of log weekly</td>
<td>0.389</td>
<td>0.626</td>
<td></td>
</tr>
<tr>
<td>wages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter estimates for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of worker effects</td>
<td>7,411,175</td>
<td>2,511,677</td>
<td></td>
</tr>
<tr>
<td>Number of firm effects</td>
<td>617,024</td>
<td>551,146</td>
<td></td>
</tr>
<tr>
<td>Std. dev. of worker</td>
<td>0.245</td>
<td>0.564</td>
<td></td>
</tr>
<tr>
<td>effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. dev. of firm</td>
<td>0.214</td>
<td>0.424</td>
<td></td>
</tr>
<tr>
<td>effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. dev. of worker</td>
<td>0.102</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation worker/firm</td>
<td>0.003</td>
<td>-0.065</td>
<td></td>
</tr>
<tr>
<td>effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.771</td>
<td>0.911</td>
<td></td>
</tr>
<tr>
<td>Parameter estimates for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>job-match variant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of job-match</td>
<td>20,726,984</td>
<td>6,746,212</td>
<td></td>
</tr>
<tr>
<td>effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.817</td>
<td>0.925</td>
<td></td>
</tr>
<tr>
<td>Std. dev. of job-match</td>
<td>0.127</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>effects</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table G3: Wage Changes Associated with Job Moves

<table>
<thead>
<tr>
<th></th>
<th>Number of job changes</th>
<th>Percent of job changes</th>
<th>2 years before</th>
<th>1 year before</th>
<th>Year of job move</th>
<th>1 year after</th>
<th>Raw Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>Panel A: U35 workers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 to 1</td>
<td>362497</td>
<td>13.13</td>
<td>5.73</td>
<td>5.76</td>
<td>5.80</td>
<td>5.83</td>
<td>0.008</td>
</tr>
<tr>
<td>1 to 2</td>
<td>156207</td>
<td>5.67</td>
<td>5.80</td>
<td>5.82</td>
<td>6.02</td>
<td>6.05</td>
<td>0.033</td>
</tr>
<tr>
<td>1 to 3</td>
<td>89440</td>
<td>3.25</td>
<td>5.80</td>
<td>5.84</td>
<td>6.12</td>
<td>6.16</td>
<td>0.048</td>
</tr>
<tr>
<td>1 to 4</td>
<td>33590</td>
<td>1.22</td>
<td>5.81</td>
<td>5.85</td>
<td>6.24</td>
<td>6.31</td>
<td>0.067</td>
</tr>
<tr>
<td>2 to 1</td>
<td>224841</td>
<td>8.14</td>
<td>5.98</td>
<td>6.02</td>
<td>5.95</td>
<td>5.97</td>
<td>-0.013</td>
</tr>
<tr>
<td>2 to 2</td>
<td>296537</td>
<td>10.73</td>
<td>6.03</td>
<td>6.06</td>
<td>6.09</td>
<td>6.11</td>
<td>0.004</td>
</tr>
<tr>
<td>2 to 3</td>
<td>160309</td>
<td>5.81</td>
<td>6.05</td>
<td>6.09</td>
<td>6.17</td>
<td>6.20</td>
<td>0.013</td>
</tr>
<tr>
<td>2 to 4</td>
<td>79819</td>
<td>2.89</td>
<td>6.11</td>
<td>6.18</td>
<td>6.30</td>
<td>6.36</td>
<td>0.019</td>
</tr>
<tr>
<td>3 to 1</td>
<td>71292</td>
<td>2.58</td>
<td>6.08</td>
<td>6.14</td>
<td>5.97</td>
<td>6.00</td>
<td>-0.029</td>
</tr>
<tr>
<td>3 to 2</td>
<td>229838</td>
<td>8.31</td>
<td>6.15</td>
<td>6.18</td>
<td>6.16</td>
<td>6.18</td>
<td>-0.003</td>
</tr>
<tr>
<td>3 to 3</td>
<td>298287</td>
<td>10.45</td>
<td>6.20</td>
<td>6.22</td>
<td>6.26</td>
<td>6.28</td>
<td>0.006</td>
</tr>
<tr>
<td>3 to 4</td>
<td>98412</td>
<td>3.56</td>
<td>6.23</td>
<td>6.28</td>
<td>6.39</td>
<td>6.43</td>
<td>0.017</td>
</tr>
<tr>
<td>4 to 1</td>
<td>21003</td>
<td>0.76</td>
<td>6.20</td>
<td>6.32</td>
<td>6.02</td>
<td>6.05</td>
<td>-0.048</td>
</tr>
<tr>
<td>4 to 2</td>
<td>51738</td>
<td>1.87</td>
<td>6.28</td>
<td>6.35</td>
<td>6.25</td>
<td>6.28</td>
<td>-0.017</td>
</tr>
<tr>
<td>4 to 3</td>
<td>170620</td>
<td>6.16</td>
<td>6.34</td>
<td>6.38</td>
<td>6.37</td>
<td>6.39</td>
<td>-0.001</td>
</tr>
<tr>
<td>4 to 4</td>
<td>429334</td>
<td>15.47</td>
<td>6.48</td>
<td>6.51</td>
<td>6.55</td>
<td>6.57</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Panel B: O55 workers

<table>
<thead>
<tr>
<th></th>
<th>Number of job changes</th>
<th>Percent of job changes</th>
<th>2 years before</th>
<th>1 year before</th>
<th>Year of job move</th>
<th>1 year after</th>
<th>Raw Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>1 to 1</td>
<td>60174</td>
<td>17.25</td>
<td>5.78</td>
<td>5.81</td>
<td>5.83</td>
<td>5.84</td>
<td>0.004</td>
</tr>
<tr>
<td>1 to 2</td>
<td>9120</td>
<td>2.59</td>
<td>5.99</td>
<td>5.99</td>
<td>6.14</td>
<td>6.15</td>
<td>0.025</td>
</tr>
<tr>
<td>1 to 3</td>
<td>2416</td>
<td>0.68</td>
<td>6.04</td>
<td>6.03</td>
<td>6.27</td>
<td>6.29</td>
<td>0.040</td>
</tr>
<tr>
<td>1 to 4</td>
<td>729</td>
<td>0.21</td>
<td>6.09</td>
<td>6.08</td>
<td>6.47</td>
<td>6.45</td>
<td>0.065</td>
</tr>
<tr>
<td>2 to 1</td>
<td>36944</td>
<td>10.49</td>
<td>6.09</td>
<td>6.12</td>
<td>6.03</td>
<td>6.05</td>
<td>-0.013</td>
</tr>
<tr>
<td>2 to 2</td>
<td>32256</td>
<td>9.12</td>
<td>6.21</td>
<td>6.21</td>
<td>6.23</td>
<td>6.24</td>
<td>0.002</td>
</tr>
<tr>
<td>2 to 3</td>
<td>7025</td>
<td>1.96</td>
<td>6.30</td>
<td>6.31</td>
<td>6.36</td>
<td>6.36</td>
<td>0.009</td>
</tr>
<tr>
<td>2 to 4</td>
<td>1538</td>
<td>0.43</td>
<td>6.43</td>
<td>6.46</td>
<td>6.58</td>
<td>6.58</td>
<td>0.020</td>
</tr>
<tr>
<td>3 to 1</td>
<td>9766</td>
<td>2.74</td>
<td>6.23</td>
<td>6.29</td>
<td>6.10</td>
<td>6.13</td>
<td>-0.031</td>
</tr>
<tr>
<td>3 to 2</td>
<td>29931</td>
<td>8.39</td>
<td>6.33</td>
<td>6.36</td>
<td>6.31</td>
<td>6.33</td>
<td>-0.007</td>
</tr>
<tr>
<td>3 to 3</td>
<td>33483</td>
<td>9.30</td>
<td>6.48</td>
<td>6.48</td>
<td>6.49</td>
<td>6.48</td>
<td>0.001</td>
</tr>
<tr>
<td>3 to 4</td>
<td>5070</td>
<td>1.41</td>
<td>6.69</td>
<td>6.70</td>
<td>6.74</td>
<td>6.77</td>
<td>0.007</td>
</tr>
<tr>
<td>4 to 1</td>
<td>3105</td>
<td>0.87</td>
<td>6.39</td>
<td>6.60</td>
<td>6.17</td>
<td>6.18</td>
<td>-0.066</td>
</tr>
<tr>
<td>4 to 2</td>
<td>5606</td>
<td>1.56</td>
<td>6.61</td>
<td>6.72</td>
<td>6.51</td>
<td>6.53</td>
<td>-0.031</td>
</tr>
<tr>
<td>4 to 3</td>
<td>23922</td>
<td>6.65</td>
<td>6.71</td>
<td>6.74</td>
<td>6.69</td>
<td>6.70</td>
<td>-0.007</td>
</tr>
<tr>
<td>4 to 4</td>
<td>94118</td>
<td>26.34</td>
<td>6.99</td>
<td>6.98</td>
<td>6.99</td>
<td>6.99</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Notes: This table describes the number and variation in weekly wages of firm-to-firm changes between firms in different quartiles of the average wage distribution. Firms are assigned to quantiles of weekly wage based on their average weekly wage in period -1 and period 0. The sample includes workers who were at the same firm in periods -2 and -1, moved to a new firm in period 0, and then stayed in the new firm until period 1. Column 7 shows the percentage change between period -1 and period 0. Column 8 shows the percentage change between period -1 and period 0 in the adjusted weekly wages. We first regress the wages of workers who stayed for at least 4 years within the same firm on a quadratic function of age and year fixed effects. We then use these coefficients to predict wages of movers. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Evidence from Germany and the United States

H.1 Germany

Figure H1: Shifts in Distribution of Daily Wages (Germany)

Panel A: U35 workers
Yearly change in quartiles

Panel B: O55 workers
Yearly change in quartiles

Notes: These graphs show the changes in the shares of U35 and O55 workers in different parts of the distribution of daily wages. Specifically, Panel A shows the ratio between the share of U35 workers in each quartile and year $t \in [1997, 2017]$ and the share of U35 in the same quartile in 1996. Panel B plots the same information for O55 workers. *Sources:* In each year, the data pools information about all workers who were over 16 years old, had a full-time contract, and earned positive wages. Country: Germany. Time period: 1996-2017. Database: LIAB Cross-Sectional Model 2, Institute for Employment Research (IAB).
Figure H2: Decomposition of Change in Daily Wages (Germany)

Panel A: Job ranking vs. wage trend

Panel B: Between vs. within firms

Notes: Panel A plots the change in mean log daily wages between O55 workers and U35 workers, as well as between 1996 and year $t \in [1997, 2017]$. This double difference is further decomposed into three components, following Equation (2). Panel B plots the difference in log daily wages between O55 workers and U35 workers for each year between 1996 and 2017, decomposing it into a between-firm and a within-firm component (Equation (3)). Sources: In each year, the data pools information about all workers who were over 16 years old, had a full-time contract, and earned positive wages. Country: Germany (1996-2017). Database: LIAB, Institute for Employment Research (IAB).

Figure H3: Decomposition of Total Ranking Shift (Germany)

Panel A: Daily wages

Panel B: Daily wages

Notes: Panel A decomposes into a between-firm and a within-firm component the total-ranking-shift change (Equation (2)) in log daily wages between O55 workers and U35 workers and between 1996 and year $t \in [1997, 2017]$. Panel B decomposes the total-ranking-shift change in log daily wages between 1996 and 2017 for U35 workers and O55 workers, separately. Sources: In each year, the data pools information about all workers who were over 16 years old, had a full-time contract, and earned positive wages. Country: Germany (1996-2017). Database: LIAB, Institute for Employment Research (IAB).
H.2 United States

Figure H4: Shifts in Distribution of Weekly Wages (USA)

Panel A: U35 workers
Yearly change in quartiles

Panel B: O55 workers
Yearly change in quartiles

Notes: These graphs show the changes in the shares of U35 and O55 workers in different parts of the distribution of weekly wages. Specifically, Panel A shows the ratio between the share of U35 workers in each quartile and year \(t \in [1986, 2019] \) and the share of U35 in the same quartile in 1985. Panel B plots the same information for O55 workers. *Sources:* In each year, the data is a representative sample of workers who were over 16 years old, had a full-time contract, and earned positive wages. Country: United States. Time period: 1985-2019. Database: Merged Outgoing Rotation Groups (MORG) of the CPS, https://data.nber.org/morg/annual/.
Figure H5: Decomposition of Change in Weekly Wages (USA)

Panel A: By age
Panel B: By year

Notes: Panel A decomposes the change in log weekly wages between 1985 and 2019 into three components (Equation (1)) for each individual age. Panel B plots the change in mean log weekly wages between O55 workers and U35 workers, as well as between 1985 and year $t \in [1986, 2019]$. This double difference is further decomposed into three components, following Equation (2). *Sources:* In each year, the data is a representative sample of workers who were over 16 years old, had a full-time contract, and earned positive wages. Country: United States. Time period: 1985-2019. Database: Merged Outgoing Rotation Groups (MORG) of the CPS, https://data.nber.org/morg/annual/.
I Evidence on Forces Behind Age Wage Gap

Figure I1: GDP Growth at Entry in Labor Market

Panel A: Italy
Panel B: Germany
Panel C: Other countries

Notes: These figures compute the percentage change in GDP (in 2010 USD) over the first years in the labor market for individuals born in different countries and in different years. For example, in Panel A, the data point for the variable “16-20” and birth year 1945 computes the percentage growth in GDP between 1961 (when individuals born in 1945 were 16 years old) and 1965 (when individuals born in 1945 were 20 years old). Panels B and C plot the GDP growth between 16 years old and 25 years old in different high-income countries. Sources: World Development Indicators by the World Bank, available online at https://databank.worldbank.org/reports.aspx?source=2&series=NY.GDP.MKTP.CD&country=
Figure I2: Aging of Firms

Panel A: Mean firm age

Panel B: Change between 1985 and 2019

Figure I3: Share of Workers with Turnover Event

Panel A: By age

Panel B: By year

Notes: Panel A plots the share of workers with a turnover event (voluntary or involuntary) by age in four different calendar years. Panel B plots the share of workers with a turnover event (voluntary or involuntary) by year for U35 workers and O55 workers. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
Figure I4: Employment by Quartiles of Firm-Level Turnover

Panel A: U35 workers

Panel B: O55 workers

Notes: In each year, we divide the firms in the sample into quartiles based on the share of their employees who experienced a turnover event (voluntary or involuntary). Then, Panel A shows the ratio between the share of U35 workers in each quartile and the share of U35 in the same quartile in 1985. Panel B plots the same information for O55 workers. Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).

Figure I5: Shares with at Least University Education

Panel A: Share with at least university education

Panel B: Deviations from 1986

Notes: Due to the unavailability of education information for most workers in the Social Security data, these figures use observations from the Survey of Household Income and Wealth by the Bank of Italy. Panel A plots the share of respondents with at least a university education for U35 workers and O55 workers. Panel B plots the ratio between the share in year t and the share in 1986. Sources: Survey of Household and Income Wealth, Bank of Italy, available online at https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/index.html?com.dotmarketing.htmlpage.language=1.
Figure 16: Age Wage Gap Controlling for Distance to University

Panel A: Municipality of birth
Panel B: Municipality of work

Notes: Panel A plots the age gap in mean log weekly wages between O55 workers and U35 workers distinguishing between two sets of workers. “Farer from university” includes workers whose birthplace is in the top quartile of distance from a university (using the list of universities in 2021). “Closer to university” includes workers whose birthplace is in the bottom three quartiles of distance from a university. Panel B repeats the same analysis using the municipality in which workers work, rather than their birthplace. *Sources:* In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).

Figure 17: Age Wage Gap by Education Level (Germany)

Notes: This graph plots the gap between the mean log daily wages of O55 workers and the mean log daily wages of U35 workers between 1996 and 2017 for all workers, workers who did not complete high school, and workers who completed high school. *Sources:* In each year, the data pools information about all workers who were over 16 years old, had a full-time contract, and earned positive wages. Country: Germany (1996-2017). Database: LIAB, Institute for Employment Research (IAB).
Figure I8: Age Wage Gap Controlling for Distance to University

Panel A: Experience profiles (mean weekly wages) Panel B: Wage gap by reliance on experience

Notes: Panel A plots the mean weekly wage by years of experience in 1985 and 2019. Panel B plots the age gap in mean log weekly wages between O55 workers and U35 workers distinguishing between two sets of sectors. “Relying on experience” are sectors in the bottom quartile of the share of workers (i) with at most five years of experience and (ii) with a weekly wage in the top decile of the within-sector wage distribution. The share of high-wage and low-experience workers is computed at baseline between 1985 and 1989. “Other sectors” are all the other 3-digit sectors in the economy.

Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).
<table>
<thead>
<tr>
<th></th>
<th>Age wage gap</th>
<th>Ranking shift</th>
<th>Ranking shift x wage trend</th>
<th>Wage trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>Logs</td>
<td>Percentage</td>
<td>Logs</td>
<td>Percentage</td>
</tr>
<tr>
<td>Panel A: Heterogeneity by employment growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firms with high emp. growth</td>
<td>0.168</td>
<td>0.125</td>
<td>0.743</td>
<td>0.008</td>
</tr>
<tr>
<td>Firms with low emp. growth</td>
<td>0.236</td>
<td>0.193</td>
<td>0.818</td>
<td>0.008</td>
</tr>
<tr>
<td>Low-high</td>
<td>0.067***</td>
<td>0.068</td>
<td>1.007</td>
<td>0.000</td>
</tr>
<tr>
<td>Panel B: Heterogeneity by firm age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Younger firms (≤ 10 y.)</td>
<td>0.155</td>
<td>0.135</td>
<td>0.873</td>
<td>0.000</td>
</tr>
<tr>
<td>Older firms (> 10 y.)</td>
<td>0.215</td>
<td>0.167</td>
<td>0.777</td>
<td>0.011</td>
</tr>
<tr>
<td>Older-younger</td>
<td>0.060***</td>
<td>0.032</td>
<td>0.532</td>
<td>0.011</td>
</tr>
<tr>
<td>Panel C: Heterogeneity by firm size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smaller firms (≤ 50 emp.)</td>
<td>0.177</td>
<td>0.166</td>
<td>0.935</td>
<td>-0.003</td>
</tr>
<tr>
<td>Larger firms (> 50 emp.)</td>
<td>0.210</td>
<td>0.149</td>
<td>0.709</td>
<td>0.015</td>
</tr>
<tr>
<td>Larger-smaller</td>
<td>0.033***</td>
<td>-0.017</td>
<td>-0.517</td>
<td>0.017</td>
</tr>
<tr>
<td>Smaller firms (≤ 100 emp.)</td>
<td>0.175</td>
<td>0.159</td>
<td>0.907</td>
<td>-0.001</td>
</tr>
<tr>
<td>Larger firms (> 100 emp.)</td>
<td>0.203</td>
<td>0.138</td>
<td>0.681</td>
<td>0.015</td>
</tr>
<tr>
<td>Larger-smaller</td>
<td>0.028***</td>
<td>-0.021</td>
<td>-0.757</td>
<td>0.016</td>
</tr>
<tr>
<td>Smaller firms (≤ 500 emp.)</td>
<td>0.168</td>
<td>0.143</td>
<td>0.849</td>
<td>0.001</td>
</tr>
<tr>
<td>Larger firms (> 500 emp.)</td>
<td>0.196</td>
<td>0.123</td>
<td>0.629</td>
<td>0.015</td>
</tr>
<tr>
<td>Larger-smaller</td>
<td>0.028***</td>
<td>-0.019</td>
<td>-0.688</td>
<td>0.014</td>
</tr>
<tr>
<td>Panel D: Heterogeneity by labor-market experience of U35 workers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O55 vs. U35 with 1 y. of exp.</td>
<td>0.137</td>
<td>0.094</td>
<td>0.686</td>
<td>0.019</td>
</tr>
<tr>
<td>O55 vs. U35 with 2 y. of exp.</td>
<td>0.149</td>
<td>0.106</td>
<td>0.714</td>
<td>0.010</td>
</tr>
<tr>
<td>O55 vs. U35 with 3 y. of exp.</td>
<td>0.142</td>
<td>0.101</td>
<td>0.708</td>
<td>0.006</td>
</tr>
<tr>
<td>O55 vs. U35 with 4 y. of exp.</td>
<td>0.149</td>
<td>0.107</td>
<td>0.720</td>
<td>0.004</td>
</tr>
<tr>
<td>O55 vs. U35 with 5 y. of exp.</td>
<td>0.153</td>
<td>0.112</td>
<td>0.734</td>
<td>0.000</td>
</tr>
<tr>
<td>O55 vs. U35 with 6 y. of exp.</td>
<td>0.171</td>
<td>0.131</td>
<td>0.768</td>
<td>-0.002</td>
</tr>
<tr>
<td>O55 vs. U35 with 7 y. of exp.</td>
<td>0.187</td>
<td>0.147</td>
<td>0.788</td>
<td>0.001</td>
</tr>
<tr>
<td>O55 vs. U35 with 8 y. of exp.</td>
<td>0.190</td>
<td>0.150</td>
<td>0.789</td>
<td>0.004</td>
</tr>
<tr>
<td>O55 vs. U35 with 9 y. of exp.</td>
<td>0.194</td>
<td>0.152</td>
<td>0.787</td>
<td>0.006</td>
</tr>
<tr>
<td>O55 vs. U35 with 10 y. of exp.</td>
<td>0.217</td>
<td>0.175</td>
<td>0.807</td>
<td>0.010</td>
</tr>
<tr>
<td>O55 vs. U35 with 11 y. of exp.</td>
<td>0.224</td>
<td>0.181</td>
<td>0.811</td>
<td>0.014</td>
</tr>
<tr>
<td>O55 vs. U35 with 12 y. of exp.</td>
<td>0.218</td>
<td>0.176</td>
<td>0.806</td>
<td>0.015</td>
</tr>
<tr>
<td>O55 vs. U35 with 13 y. of exp.</td>
<td>0.191</td>
<td>0.150</td>
<td>0.785</td>
<td>0.012</td>
</tr>
<tr>
<td>O55 vs. U35 with 14 y. of exp.</td>
<td>0.173</td>
<td>0.133</td>
<td>0.769</td>
<td>0.011</td>
</tr>
<tr>
<td>O55 vs. U35 with 15 y. of exp.</td>
<td>0.178</td>
<td>0.138</td>
<td>0.777</td>
<td>0.011</td>
</tr>
<tr>
<td>Panel E: Restricting O55 workers to 55-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-60 vs. U35</td>
<td>0.172</td>
<td>0.133</td>
<td>0.769</td>
<td>0.008</td>
</tr>
<tr>
<td>56-60 vs. U35, men only</td>
<td>0.181</td>
<td>0.134</td>
<td>0.741</td>
<td>0.016</td>
</tr>
<tr>
<td>O55 vs. U35</td>
<td>0.190</td>
<td>0.149</td>
<td>0.784</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Notes: In Panel A, firms with low employment growth had below-median employment growth between 1985 and 2019, while firms with high employment growth had above-median employment growth over the same period. In Panel B, younger firms were at most ten years old, while older firms were more than ten years old. In Panel C, firms are divided in two categories based on their number of employees. In Panel D, we compare O55 workers to U35 workers with different years of experience in the labor market. In Panel E, we compute the age wage gap including either only individuals between 56 years old and 60 years old among the older workers or all workers who were older than 55 years old (the baseline specification). *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

Sources: In each year, the data pools information about all workers who were over 16 years old, worked at least six months, earned positive wages, and did not retire. Country: Italy. Time period: 1985-2019. Database: UNIEMENS, Istituto Nazionale della Previdenza Sociale (INPS).